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Preface

The Lecture Notes collect seven mini-courses presented at the 5th
Prague Summer School on Mathematical Statistical Physics that took
place during two weeks of September 2006. As with preceding schools, it
was aimed at PhD students and young postdocs. The central theme of
the volume is what could be called “mathematics of phase transitions”
in diverse contexts. Even though all courses were meant to introduce
the reader to recent progress of a particular topic of modern statisti-
cal physics, attention has been paid to providing a solid grounding by
carefully developing various basic tools.

One of the techniques that led, more than two decades ago, to a
series of important outcomes in the theory of phase transitions of lattice
models was reflection positivity. Recently it resurfaced and was used
to obtain interesting new results in various settings. The lectures of
Marek Biskup include a thorough introduction to reflection positivity
as well as a review of its recent applications. In addition, it contains a
crash course on lattice spin models that is useful as a background for
other lectures of the collection.

Also the following two contributions concern equilibrium statistical
physics. The lectures of Dmitri Ioffe are devoted to a stochastic geomet-
ric reformulation of classical as well as quantum Ising models. A unified
approach to the Fortuin-Kasteleyn and random current representations
in terms of path integrals is presented.

Statistical mechanics of directed polymers interacting with one-
dimensional spatial effects is a topic with various applications in physics
and biophysics. The lectures of Fabio Toninelli are devoted to a thor-
ough discussion of the localization/delocalization transition in these
models.

V



VI Preface

Metastability is a topic that has attracted a lot of attention re-
cently. Here it is discussed in the notes of Anton Bovier and Frank den
Hollander. The emphasis of the course of Anton Bovier is on a gen-
eral rigorous framework. It explores how distinct time scales arise in
Markov processes and how the metastable exit times can be expressed
in terms of capacity, the crucial notion coming from potential theory.
The lectures by Frank den Hollander are then devoted to a nontrivial
application to metastability in the context of Glauber and Kawasaki
dynamics of lattice gases. The main step is the careful evaluation of
the relevant capacity in these particular cases.

Readers can have a glimpse of the prolifically developing nonequi-
librium realm in the remaining two contributions. The lectures that
were presented by Christian Maes and Karel Netočný form a pedagog-
ical account of several recently discussed topics, with an emphasis on
general principles.

Facilitated spin models, also known as kinetically constrained spin
models, are reflecting important peculiar features of glassy dynamics.
The lectures of Fabio Martinelli, submitted here with his coauthors, re-
view mathematical results that contributed to a settlement of questions
arising from numerical simulations.

Only one mini-course presented in Prague was not included into the
present volume. These are the lectures about computational complexity
and phase transitions in combinatorial optimisation presented by Stefan
Mertens. The main reason for this ommision is that his presentation
was based on the recent monograph written by him and Cris Moore
that already covers very well this topic.

The School was organised by Center for Theoretical Study (through
the grant MSM 0021620845) with the Institute of Theoretical Com-
puter Science at Charles University providing their beautiful lecture
room in the historical centre. It could not have happened without the
support of the European Science Foundation under the auspices of the
programme Phase Transitions and Fluctuation Phenomena for Random
Dynamics in Spatially Extended Systems. But most of all, the success
of the School was determined by the lecturers as well as the students
who created a pleasant and stimulating atmosphere. We hope that this
spirit found its way into the written version of the lecture notes and
will be appreciated by the reader.

Prague Roman Kotecký
November, 2008
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1 Introduction

Phase transitions are one of the most fascinating, and also most
perplexing, phenomena in equilibrium statistical mechanics. On the
physics side, many approximate methods to explain or otherwise jus-
tify phase transitions are known but a complete mathematical under-
standing is available only in a handful of simplest of all cases. One
set of tractable systems consists of the so called lattice spin models.
Originally, these came to existence as simplified versions of (somewhat
more realistic) models of crystalline materials in solid state physics but
their versatile nature earned them a life of their own in many other
disciplines where complex systems are of interest.

The present set of notes describes one successful mathematical ap-
proach to phase transitions in lattice spin models which is based on
the technique of reflection positivity. This technique was developed in
the late 1970s in the groundbreaking works of F. Dyson, J. Fröhlich,
R. Israel, E. Lieb, B. Simon and T. Spencer who used it to establish
phase transitions in a host of physically-interesting classical and quan-
tum lattice spin models; most notably, the classical Heisenberg ferro-
magnet and the quantum XY model and Heisenberg antiferromagnet.
Other powerful techniques — e.g., Pirogov-Sinai theory, lace expansion
or multiscale analysis in field theory — are available at present that
can serve a similar purpose in related contexts, but we will leave their
review to experts in those areas.

The most attractive feature of reflection positivity — especially,
compared to the alternative techniques — is the simplicity of the
resulting proofs. There are generally two types of arguments one can
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use: The first one is to derive the so called infrared bound, which states
in quantitative terms that the fluctuations of the spin variables are
dominated by those of a lattice Gaussian free field. In systems with an
internal symmetry, this yields a proof of a symmetry-breaking phase
transition by way of a spin-condensation argument. Another route goes
via the so called chessboard estimates, which allow one to implement
a Peierls-type argument regardless of whether the model exhibits an
internal symmetry or not.

Avid users of the alternative techniques are often quick to point
out that the simplicity of proofs has its price: As a rather restrictive
condition, reflection positivity applies only to a small (in a well defined
sense) class of systems. Fortunately for the technique and mathematical
physics in general, the models to which it does apply constitute a large
portion of what is interesting for physics, and to physicists. Thus, unless
one is exclusively after universal statements — i.e., those robust under
rather arbitrary perturbations — the route via reflection positivity is
often fairly satisfactory.

The spectacular success of reflection positivity from the late 1970s
was followed by many interesting developments. For instance, in var-
ious joint collaborations, R. Dobrushin, R. Kotecký and S. Shlosman
showed how chessboard estimates can be used to prove a phase transi-
tion in a class of systems with naturally-defined ordered and disordered
components; most prominently, the q-state Potts model for q � 1.
Another neat application came in the papers of M. Aizenman from
early 1980s in which he combined the infrared bound with his random-
current representation to conclude mean-field critical behavior in the
nearest-neighbor Ising ferromagnet above 4 dimensions. Yet another
example is the proof, by L. Chayes, R. Kotecký and S. Shlosman, that
the Fisher-renormalization scheme in annealed-diluted systems may be
substituted by the emergence of an intermediate phase.

These notes discuss also more recent results where their author had
a chance to contribute to the field. The common ground for some of
these is the use of reflection positivity to provide mathematical justifi-
cation of “well-known” conclusions from physics folklore. For instance,
in papers by N. Crawford, L. Chayes and the present author, the in-
frared bound was shown to imply that, once a model undergoes a field
or energy driven first-order transition in mean-field theory, a similar
transition will occur in the lattice model provided the spatial dimen-
sion is sufficiently high or the interaction is sufficiently spread-out (but
still reflection positive). Another result — due to L. Chayes, S. Starr
and the present author — asserts that if a reflection-positive quantum
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spin system undergoes a phase transition at intermediate temperatures
in its classical limit, a similar transition occurs in the quantum system
provided the magnitude of the quantum spin is sufficiently large.

There have also been recent cases where reflection positivity brought
a definite end to a controversy that physics arguments were not able to
resolve. One instance concerned certain non-linear vector and liquid-
crystal models; it was debated whether a transition can occur already
in 2 dimensions. This was settled in recent work of A. van Enter and
S. Shlosman. Another instance involved spin systems whose (infinite)
set of ground states had a much larger set of symmetries than the
Hamiltonian of the model; two competing physics reasonings argued
for, and against, the survival of these states at low temperatures. Here,
in papers of L. Chayes, S. Kivelson, Z. Nussinov and the present au-
thor, spin-wave free energy calculations were combined with chessboard
estimates to construct a rigorous proof of phase coexistence of only a
finite number of low-temperature states.

These recent activities show that the full potential of reflection posi-
tivity may not yet have been fully exhausted and that the technique will
continue to play an important role in mathematical statistical mechan-
ics. It is hoped that the present text will help newcomers to this field
learn the essentials of the subject before the need arises to plow through
the research papers where the original derivations first appeared.

Organization

This text began as class notes for nine hours of lectures on reflection
positivity at the 2006 Prague School and gradually grew into a survey
of (part of) this research area. The presentation opens with a review of
basic facts about lattice spin models and then proceeds to study two
applications of the infrared bound: a spin-condensation argument and a
link to mean-field theory. These are followed by the classical derivation
of the infrared bound from reflection positivity. The remainder of the
notes is spent on applications of a by-product of this derivation, the
chessboard estimate, to proofs of phase coexistence.

The emphasis of the notes is on a pedagogical introduction to re-
flection positivity; for this reason we often sacrifice on generality and
rather demonstrate the main ideas on the simplest case of interest. To
compensate for the inevitable loss of generality, each chapter is en-
dowed with a section “Literature remarks” where we attempt to list
the references deemed most relevant to the topic at hand. The notes
are closed with a short section on topics that are not covered as well
as some open problems that the author finds worthy of some thought.
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2 Lattice Spin Models: Crash Course

This section prepares the ground for the rest of the course by introduc-
ing the main concepts from the theory of Gibbs measures for lattice
spin models. The results introduced here are selected entirely for the
purpose of these notes; readers wishing a more comprehensive — and
in-depth — treatment should consult classic textbooks on the subject.

2.1 Basic Setup

Let us start discussing the setup of the models to which we will di-
rect our attention throughout this course. The basic ingredients are as
follows:

• Lattice: We will take the d-dimensional hypercubic lattice Z
d as our

underlying graph. This is the graph with vertices at all points in R
d

with integer coordinates and edges between any nearest neighbor
pair of vertices; i.e., those at Euclidean distance one. We will use
〈x, y〉 to denote an (unordered) nearest-neighbor pair.
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• Spins: At each x ∈ Z
d we will consider a spin Sx, by which we will

mean a random variable taking values in a closed subset Ω of R
ν ,

for some ν ≥ 1. We will use Sx · Sy to denote a scalar product
between Sx and Sy (Euclidean or otherwise).

• Spin configurations: For Λ ⊂ Z
d, we will refer to SΛ := (Sx)x∈Λ

as the spin configuration in Λ. We will be generically interested in
describing the statistical properties of such spin configurations with
respect to certain (canonical) measures.

• Boundary conditions: To describe the law of SΛ, we will not be
able to ignore that some spins are also outside Λ. We will refer
to the configuration SΛc of these spins as the boundary condition.
The latter will usually be fixed and may often even be considered a
parameter of the game. When both SΛ and SΛc are known, we will
write

S := (SΛ, SΛc) (2.1)

to denote their concatenation on all of Z
d.

The above setting incorporates rather varied physical contexts. The
spins may be thought of as describing magnetic moments of atoms in a
crystal, displacement of atoms from their equilibrium positions or even
orientation of grains in nearly-crystalline granular materials.

To define the dynamics of spin systems, we will need to specify the
energetics. This is conveniently done by prescribing the Hamiltonian
which is a function on the spin-configuration space ΩZ

d
that tells us

how much energy each spin configuration has. Of course, to have all
quantities well defined we need to fix a finite volume Λ ⊂ Z

d and
compute only the energy in Λ. The most general formula we will ever
need is

HΛ(S) :=
∑

A⊂Z
d finite

A∩Λ�=∅

ΦA(S) (2.2)

where ΦA is a function that depends only on SA. To make everything
well defined, we require, e.g., that ΦA is translation invariant and that∑
A�0 ‖ΦA‖∞ <∞. (The infinity norm may be replaced by some other

norm; in particular, should the need arise to talk about unbounded
spins.) It is often more convenient to write the above as a formal sum:

H(S) :=
∑

A

ΦA(S) (2.3)

with the above specific understanding whenever a precise definition is
desired.
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The energy is not sufficient on its own to define the statistical
mechanics of such spin systems; we also need to specify the a priori
measure on the spins. This will be achieved by prescribing a Borel mea-
sure μ0 on Ω (which may or may not be finite). Before the interaction is
“switched on,” the spin configurations will be “distributed” according
to the product measure, i.e., the a priori law of SΛ is

⊗
x∈Λ μ0(dSx).

The full statistical-mechanical law is then given by a Gibbs measure
which (in finite volume) takes the general form e−βH(S)

∏
x μ0(dSx); cf

Sect. 2.3 for more details.

2.2 Examples

Here are a few examples of spin systems:

(1) O(n)-model : Here Ω := S
n−1 = {z ∈ R

n : |z|2 = 1} with μ0 :=
surface measure on S

n−1. The Hamiltonian is

H(S) := −J
∑

〈x,y〉
Sx · Sy (2.4)

where the dot denotes the usual (Euclidean) dot-product in R
n and

J ≥ 0. (Note that this comes at no loss as the sign of J can be changed
by reversing the spins on the odd sublattice of Z

d.)
Note that if A ∈ O(n) — i.e., A is an n-dimensional orthogonal

matrix — then
ASx ·ASy = Sx · Sy (2.5)

and so H(AS) = H(S). Since also μ0 ◦ A−1 = μ0, the model possesses
a global rotation invariance — with respect to a simultaneous rotation
of all spins. (For n = 1 this reduces to the invariance under the flip
+1 ↔ −1.)

Two instances of this model are known by other names: n = 2 is the
rotor model while n = 3 is the (classical) Heisenberg ferromagnet.

(2) Ising model : Formally, this is the O(1)-model. Explicitly, the spin
variables σx take values in Ω := {−1,+1} with uniform a priori mea-
sure; the Hamiltonian is

H(σ) := −J
∑

〈x,y〉
σxσy (2.6)

Note that the energy is smaller when the spins at nearest neighbors
align and higher when they antialign. (A similar statement holds, of
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course, for all O(n) models.) This is due to the choice of the sign J ≥ 0
which makes these models ferromagnets.

(3) Potts model : This is a generalization of the Ising model beyond two
spin states. Explicitly, we fix q ∈ N and let σx take values in {1, . . . , q}
(with a uniform a priori measure). The Hamiltonian is

H(σ) := −J
∑

〈x,y〉
δσx,σy (2.7)

so the energy is −J when σx and σy “align” and zero otherwise. The
q = 2 case is the Ising model and q = 1 may be related to bond
percolation on Z

d (via the so called Fortuin-Kasteleyn representation
leading to the so called random-cluster model).

It turns out that the Hamiltonian (2.7) can be brought to the form
(2.4). Indeed, let Ω denote the set of q points uniformly spread on the
unit sphere in R

q−1; we may think of these as the vertices of a q-simplex
(or a regular q-hedron). The cases q = 2, 3, 4 are depicted in this figure:

More explicitly, the elements of Ω are vectors v̂α, α = 1, . . . , q, such
that

v̂α · v̂β =

{
1, if α = β,
− 1
q−1 , otherwise.

(2.8)

The existence of such vectors can be proved by induction on q. Clearly,
if Sx corresponds to σx and Sy to σy, then

Sx · Sy =
q

q − 1
δσx,σy −

1
q − 1

(2.9)

and so the Potts Hamiltonian is to within an additive constant of

H(S) := −J̃
∑

〈x,y〉
Sx · Sy (2.10)
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with J̃ := J q−1
q . This form, sometimes referred to as tetrahedral repre-

sentation, will be far more useful for our purposes than (2.7).

(4) Liquid-crystal model : There are many models that describe certain
granular materials known to many of us from digital displays: liquid
crystals. A distinguished feature of such materials is the presence of
orientational long-range order where a majority of the grains align with
one another despite the fact that the system as a whole is rotationally
invariant. One of the simplest models capturing this phenomenon is as
follows: Consider spins Sx ∈ S

n−1 with a uniform a priori measure.
The Hamiltonian is

H(S) := −J
∑

〈x,y〉
(Sx · Sy)2 (2.11)

The interaction features global rotation invariance and the square takes
care of the fact that reflection of any spin does not change the energy
(i.e., only the orientation rather than the direction of the spin matters).

As for the Potts model, the Hamiltonian can again be brought to
the form reminiscent of the O(n)-model. Indeed, given a spin S ∈ S

n−1

with Cartesian components S(α), α = 1, . . . , n, define an n× n matrix
Q by

Qαβ := S(α)S(β) − 1
n
δαβ (2.12)

(The subtraction of the identity is rather arbitrary and more or less
unnecessary; its goal is to achieve zero trace and thus reduce the number
of independent variables characterizing Q to n−1; i.e., as many degrees
of freedom as S has.) As is easy to check, if Q ↔ S and Q̃ ↔ S̃ are
related via the above formula, then

Tr(QQ̃) = (S · S̃)2 − 1
n

(2.13)

Since Q is symmetric, the trace evaluates to

Tr(QQ̃) =
∑

α,β

QαβQ̃αβ (2.14)

which is the canonical scalar product on n×nmatrices. In this language
the Hamiltonian takes again the form we saw in the O(n) model.
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At this point we pause to remark that all of the above Hamiltonians
are of the following rather general form:

H(S) = +
1
2

∑

x,y

Jx,y|Sx − Sy|2 (2.15)

where (Jxy) is a collection of suitable coupling constants and | · | de-
notes the Euclidean norm in R

n. This is possible because, in all cases,
the (corresponding) norm of Sx is constant and so adding it to the
Hamiltonian has no effect on the probability measure. The model thus
obtained bears striking similarity to our last example:

(5) Lattice Gaussian free field : Let Ω := R, μ0 := Lebesgue measure
and let P(x, y) be the transition kernel of a symmetric random walk
on Z

d; i.e., P(x, y) = P(0, y − x) = P(0, x − y). In this case we will
denote the variables by φx; the Hamiltonian is

H(φ) :=
1
2

∑

x,y

P(x, y)(φy − φx)2 (2.16)

This can be rewritten as

H(φ) =
(
φ, (1− P)φ

)
L2(Zd)

=: E1−P(φ, φ) (2.17)

where experts on harmonic analysis of Markov chains will recognize
E1−P(φ, φ) to be the Dirichlet form associated with the generator 1−P
of the above random walk. In the Gibbs measure, the law of the φx’s
will be Gaussian with grad-squared interactions; hence the name of the
model.

The sole difference between (2.15) and (2.16) is that, unlike the φx’s,
the spins Sx are generally confined to a subset of a Euclidean space
and/or their a priori measure is not Lebesgue — which will ultimately
mean their law is not Gaussian. One purpose of this course is to show
how this formal similarity can nevertheless be exploited to provide
information on the models (2.15).

2.3 Gibbs Formalism

Now we are ready to describe the statistical-mechanical properties
of the above models for which we resort to the formalism of Gibbs-
Boltzmann distributions. First we define these in finite volume: Given
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a finite set Λ ⊂ Z
d and a boundary condition SΛc we define the Gibbs

measure in Λ to be the probability measure on ΩΛ given by

μ
(SΛc )
Λ,β (dSΛ) :=

e−βHΛ(S)

ZΛ,β(SΛc)

∏

x∈Λ
μ0(dSx) (2.18)

Here β ≥ 0 is the inverse temperature — in physics terms, β := 1
kBT

where kB is the Boltzmann constant and T is the temperature measured
in Kelvins — and ZΛ,β(SΛc) is the normalization constant called the
partition function.

To extend this concept to infinite volume we have two options:

(1) Consider all possible weak cluster points of the family {μ(SΛc )
Λ,β }

as Λ ↑ Z
d (with the boundary condition possibly varying with Λ)

and all convex combinations thereof.
(2) Identify a distinguishing property of Gibbs measures and use it to

define infinite volume objects directly.

While approach (1) is ultimately very useful in practical problems,
option (2) is more elegant at this level of generality. The requisite “dis-
tinguishing property” is as follows:

Lemma 2.1 (DLR condition). Let Λ ⊂ Δ ⊂ Z
d be finite sets and

let SΔc ∈ ΩΔc
. Then (for μ(SΔc )

Δ,β -a.e. SΛc),

μ
(SΔc )
Δ,β

(
·
∣∣SΛc

)
= μ(SΛc )

Λ,β (·) (2.19)

In simple terms, conditioning the Gibbs measure in Δ on the configu-
ration in Δ \ Λ, we get the Gibbs measure in Λ with the corresponding
boundary condition.

This leads to:

Definition 2.2 (DLR Gibbs measures). A probability measure on
ΩZ

d
is called an infinite volume Gibbs measure for interaction H and

inverse temperature β if for all finite Λ ⊂ Z
d and μ-a.e. SΛc,

μ
(
·
∣∣SΛc

)
= μ(SΛc )

Λ,β (·) (2.20)

where μ(SΛc )
Λ,β is defined using the Hamiltonian HΛ.

We will use Gβ to denote the set of all infinite volume Gibbs mea-
sures at inverse temperature β (assuming the model is clear from the
context).
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Here are some straightforward, nonetheless important consequences
of these definitions:

(1) By Lemma 2.1, any weak cluster point of (μ(SΛc )
Λ,β ) belongs to Gβ .

(2) By the Backward Martingale Convergence Theorem, if Λn ↑ Z
d and

μ ∈ Gβ , then for μ-a.e. spin configuration S the sequence μ
(SΛc

n
)

Λn,β
has a weak limit, which then belongs to Gβ .

(3) Gβ is a convex set (and is closed in the topology of weak conver-

gence). Moreover, μ ∈ Gβ is extremal in Gβ iff μ
(SΛc

n
)

Λn,β
w−→ μ for

μ-almost every spin configuration S.

Similarly direct is the proof of the following “continuity” property:

(4) Let Hn be a sequence of Hamiltonians converging — in the sup-
norm on the potentials ΦA — to Hamiltonian H, and let βn be
a sequence with βn → β < ∞. Let μn be the sequence of the
corresponding Gibbs measures. Then every (weak) cluster point
of (μn) is an infinite-volume Gibbs measure for the Hamiltonian H
and inverse temperature β.

Note that the fact that Gβ is closed and convex ensures that each ele-
ment can be written as a unique convex combination of extreme points
(by the Krein-Millman theorem). The DLR condition permits to extract
the corresponding decomposition probabilistically by conditioning on
the σ-algebra of tail events.

Now we give a meaning to the terms that are frequently (though
sometimes vaguely) employed by physicists:

Definition 2.3 (Phase coexistence). We say that the model is at
phase coexistence (or undergoes a first-order phase transition) when-
ever the parameters are such that |Gβ | > 1.

The simplest example where this happens is the Ising model. Let

ΛL := {1, . . . , L}d (2.21)

and consider the Ising model in ΛL with all boundary spins set to +1.
(This is the so called plus boundary condition.) As a consequence of
stochastic domination — which we will not discuss here — μ+

ΛL,β
tends

weakly to a measure μ+ as L→∞. Similarly, for the minus boundary
condition, μ−ΛL,β

w−→ μ−. It turns out that, in dimensions d ≥ 2 there
exists βc(d) ∈ (0,∞) such that

β > βc(d) ⇒ μ+ �= μ− (2.22)
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i.e, the model is at phase coexistence, while for β < βc(d), the set of all
infinite volume Gibbs measures is a singleton — which means that the
model is in the uniqueness regime. One of our goals is to prove similar
statements in all of the models introduced above.

2.4 Torus Measures

In the above, we always put a boundary condition in the complement
of the finite set Λ. However, it is sometimes convenient to consider
other boundary conditions. One possibility is to ignore the existence
of Λc altogether — this leads to the so called free boundary condition.
Another possibility is to wrap Λ into a graph without a boundary
— typically a torus. This is the case of periodic or torus boundary
conditions.

Consider the torus TL, which we define as a graph with vertices
(Z/LZ)d, endowed with the corresponding (periodic) nearest-neighbor
relation. For nearest-neighbor interactions, the corresponding Hamil-
tonian is defined easily, but some care is needed for interactions that
can be of arbitrary range. If S ∈ ΩTL we define the torus Hamiltonian
HL(S) by

HL(S) := HΛL
(periodic extension of S to Z

d) (2.23)

where we recall ΛL := {1, . . . , L}d. For H(S) := −1
2

∑
x,y Jx,ySx · Sy

we get

HL(S) = −1
2

∑

x,y∈TL

J (L)
x,y Sx · Sy (2.24)

where J (L)
x,y are the periodized coupling constants

J (L)
x,y :=

∑

z∈Zd

Jx,y+Lz (2.25)

The Gibbs measure on ΩTL is then defined accordingly:

μL,β(dS) :=
e−βHL(S)

ZL,β

∏

x∈TL

μ0(dSx) (2.26)

where ZL,β is the torus partition function. The following holds:

Lemma 2.4. Every (weak) cluster point of (μL,β)L≥1 lies in Gβ.

Note that there is something to prove here because, due to (2.25),
the interaction depends on L.
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2.5 Some Thermodynamics

Statistical mechanics combines, in its historical development, molecular
theory with empirical thermodynamics. Many mathematically rigorous
accounts of statistical mechanics thus naturally start the exposition
with the notion of the free energy. We will need this notion only tangen-
tially — it suffices to think of the free energy as a cumulant generating
function — in the proofs of phase coexistence. The relevant statement
is as follows:

Theorem 2.5. For x ∈ Z
d let τx be the shift-by-x defined by (τxS)y :=

Sy−x. Let g : ΩZ
d → R be a bounded, local function — i.e., one that

depends only on a finite number of spins — and recall that μL,β denote
the torus Gibbs measures. Then:

(1) The limit

f(h) := lim
L→∞

1
Ld

logEμL,β

{
exp

(
h

∑

x∈TL

g ◦ τx
)}

(2.27)

exists for all h ∈ R and is convex in h.
(2) If μ ∈ Gβ is translation invariant, then

∂f

∂h−

∣∣∣
h=0
≤ Eμ(g) ≤

∂f

∂h+

∣∣∣
h=0

(2.28)

(3) There exist translation-invariant, ergodic measures μ± ∈ Gβ such
that

Eμ±(g) =
∂f

∂h±

∣∣∣
h=0

(2.29)

Proof of (1), main idea. For compact state-spaces and absolutely-
summable interactions, the existence of the limit follows by standard
subadditivity arguments. In fact, the limit will exist and will be the
same even if we replace μL,β in (2.27) by any sequence of Gibbs mea-
sures in ΛL with (even L-dependent) boundary conditions. The con-
vexity of f is a consequence of the Hölder inequality applied to the
expectation in (2.27). ��

Proof of (2). Let μ ∈ Gβ be translation invariant and abbreviate

ZL(h) := Eμ

{
exp

(
h

∑

x∈ΛL

g ◦ τx
)}

(2.30)
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Since logZL is convex in h (again, by Hölder) we have for any h > 0
that

logZL(h)− logZL(0) ≥ ∂

∂h
logZL(h)

∣∣∣
h=0

h

= hEμ
( ∑

x∈ΛL

g ◦ τx
)

= h|ΛL|Eμ(g)
(2.31)

Dividing by |ΛL|, passing to L → ∞ and using that f is independent
of the boundary condition, we get

f(h)− f(0) ≥ hEμ(g) (2.32)

Divide by h and let h ↓ 0 to get one half of (2.28). The other half is
proved analogously. ��

Proof of (3). Let Gβ,h be the set of Gibbs measures for the Hamiltonian
H−(h/β)

∑
x g◦τx. A variant of the proof of (2) shows that if μh ∈ Gβ,h

is translation-invariant, then

∂f

∂h−
≤ Eμh

(g) ≤ ∂f

∂h+
(2.33)

In particular, if h > 0 we have

Eμh
(g) ≥ ∂f

∂h−
≥
h>0

∂f

∂h+

∣∣∣
h=0

(2.34)

by the monotonicity of derivatives of convex functions. Taking h ↓ 0
and extracting a weak limit from μh, we get a Gibbs measure μ+ ∈ Gβ
such that

Eμ+(g) ≥ ∂f

∂h+

∣∣∣
h=0

(2.35)

(The expectations converge because g is a local — and thus continuous,
in the product topology — function.) Applying (2) we verify (2.29)
for μ+.

The measure μ+ is translation invariant and so it remains to show
that μ+ can actually be chosen ergodic. To that end let us first prove
that

1
|ΛL|

∑

x∈ΛL

g ◦ τx −→
L→∞

Eμ+(g), in μ+-probability (2.36)

The random variables on the left are bounded by the norm of g and
have expectation Eμ+(g) so it suffices to prove that the limsup is no
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larger than the expectation. However, if that were not the case, we
would have

μ+
( ∑

x∈ΛL

g ◦ τx >
(
Eμ+(g) + ε

)
|ΛL|

)
> ε (2.37)

for some ε > 0 and some sequence of L’s. But then for all h > 0,

Eμ+

{
exp

(
h

∑

x∈ΛL

g ◦ τx
)}

≥ εe|ΛL|h[Eμ+ (g)+ε] (2.38)

In light of the independence of the limit in (1) on the measure we use —
as discussed in the sketch of the proof of (1) — this would imply

f(h) ≥ h
(
Eμ+(g) + ε

)
(2.39)

which cannot hold for all h > 0 if the right-derivative of f at h = 0 is
to equal Eμ+(g). Hence (2.36) holds.

By the Pointwise Ergodic Theorem, the convergence in (2.36) actu-
ally occurs — and, by (2.36), the limit equals Eμ+(g) — for μ+-almost
every spin configuration. This implies that the same must be true for
any measure in the decomposition of μ+ into ergodic components. By
classic theorems from Gibbs-measure theory, every measure in this de-
composition is also in Gβ and so we can choose μ+ ergodic. ��

The above theorem is very useful for the proofs of phase coexistence.
Indeed, one can often prove some estimates that via (2.28) imply that
f is not differentiable at h = 0. Then one applies (2.29) to infer the
existence of two distinct, ergodic Gibbs measures saturating the bounds
in (2.28). Examples of this approach will be discussed throughout these
notes.

2.6 Literature Remarks

This section contains only the minimum necessary to understand the
rest of the course. For a comprehensive treatment of Gibbs-measure the-
ory, we refer to classic monographs by Ruelle [88], Israel [66], Simon [97]
and Georgii [57]. Further general background on statistical mechanics
of such systems can be found in Ruelle’s “blue” book [89]. The acronym
DLR derives from the initials of Dobrushin and the team of Lanford &
Ruelle who first introduced the idea of conditional definition of infinite
volume Gibbs measures; cf e.g. [32].
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The proof of Theorem 2.5 touches upon the subject of large devi-
ation theory which provides a mathematical framework for many em-
pirical principles underlying classical thermodynamics. The connection
of course appears in various disguises in the textbooks [66, 97, 57];
for expositions dealing more exclusively with large-deviation theory we
refer to the books by den Hollander [64], Dembo and Zeitouni [29],
and Deuschel and Stroock [30]. For the Pointwise Ergodic Theorem
and other facts from ergodic theory we refer to the textbooks by, e.g.,
Krengel [73] and Petersen [86].

Stochastic domination and the FKG inequality — dealing with par-
tial ordering of spin configurations, functions thereof and thus also
measures — are discussed in, e.g., Georgii [57] or Grimmett [61]. The
proof of (2.22) can alternatively be based on Griffiths’ correlation in-
equalities (Griffiths [60]). The phase coexistence in the Ising model at
large β was first proved by Peierls via a contour argument that now
bears his name (see Griffiths [59]).

Concerning the historical origin of the various model systems; the
O(n) model goes back to Heisenberg (who introduced its quantum ver-
sion), the Ising model was introduced by Lenz and given to Ising as
a thesis problem while the Potts model was introduced by Domb and
given to Potts as a thesis problem. Ironically, the O(1)-model bears
Ising’s name even though his conclusions about it were quite wrong!
Apparently, Potts was more deserving.

An excellent reference for mathematical physics of liquid crystals
is the monograph by de Gennes and Prost [56]; other, more combi-
natorial models have been considered by Heilmann and Lieb [62] and
Abraham and Heilmann [1]. The tetrahedral representation of the Potts
model can be found in Wu’s review article [106]; the matrix represen-
tation of the liquid-crystal model is an observation of Angelescu and
Zagrebnov [6]. Gradient fields — of which the GFF is the simplest ex-
ample — have enjoyed considerable attention in recent years; cf the
review articles by Funaki [52], Velenik [104] and Sheffield [92]. Another
name for the GFF is harmonic crystal.

3 Infrared Bound & Spin-wave Condensation

The goal of this section is to elucidate the significance of the infrared
bound — postponing its proof and connection with reflection posi-
tivity until Section 5 — and the use thereof in the proofs of sym-
metry breaking via the mechanism of spin-wave condensation. The
presence, and absence, of symmetry breaking in the O(n)-model with
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certain non-negative two-body interactions will be linked to recurrence
vs transience of a naturally induced random walk.

3.1 Random Walk Connections

Consider the model with the Hamiltonian

H = −1
2

∑

x,y

Jxy Sx · Sy (3.1)

where the spins Sx are a priori independent and distributed according
to a measure μ0 which is supported in a compact set Ω ⊂ R

ν . Assume
that the interaction constants satisfy the following requirements:

(I1) Jxx = 0 and Jx,y = J0,y−x
(I2)

∑
x |J0,x| <∞ and

∑
x J0,x = 1

i.e., the coupling constants are translation invariant, absolutely summ-
able and, for convenience, normalized to have unit strength. We will
actually always restrict our attention to the following specific examples:

• Nearest-neighbor interactions:

Jx,y =

{
1
2d , if |x− y| = 1,
0, otherwise.

(3.2)

• Yukawa potentials :
Jx,y = Ce−μ|x−y|1 (3.3)

with μ > 0 and C > 0.
• Power-law decaying potentials:

Jx,y =
C

|x− y|s1
(3.4)

with s > d and C > 0.

On top of these, we will also permit:

• Any convex combination of the three interactions above (with, of
course, positive coefficients).

Note that we are using the �1-distance (rather than the more natural
�2-distance). This is dictated by our methods of proof (see Lemma 5.5).
Also note that the Yukawa potential is in the class of Kac models where
the coupling constants take the form Jx,y = γdf(γ(x − y)) for some
rapidly decaying function f : R

d → [0,∞) with unit L1-norm.
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A unifying feature of all three interactions is that Jxy ≥ 0 which
allows us to interpret the coupling constants as the transition probabil-
ities of a random walk on Z

d. Explicitly, consider a Markov chain (Xn)
on Z

d with
Pz(Xn+1 = y|Xn = x) := Jxy (3.5)

where Pz is the law of the chain started at site z. Of particular interest
will be the question whether this random walk is recurrent or transient
— i.e., whether a walk started at the origin returns there infinitely, or
only finitely many times. Here is a criterion to this matter:

Lemma 3.1. Let Ĵ(k) :=
∑
x J0,xeik·x, k ∈ [−π, π]d. Then (Xn) is

transient if and only if
∫

[−π,π]d

dk
(2π)d

1
1− Ĵ(k)

<∞ (3.6)

Proof. Recall that a random walk is transient if and only if the first
return time to the origin, τ0 := inf{n > 0: Xn = 0}, is infinite with
a positive probability, i.e., P0(τ0 < ∞) < 1. By the formula E0N =
[1 − P0(τ0 < ∞)]−1 — where E0 is the expectation with respect to P0

— we thus get that transience is equivalent E0N <∞. To compute the
expectation, we note

1{Xn=0} =
∫

[−π,π]d

dk
(2π)d

eik·Xn (3.7)

which via E0eik·Xn = [E0eik·X1 ]n = [
∑
x J0,xeik·x]n = Ĵ(k)n implies

P0(Xn = 0) =
∫

[−π,π]d

dk
(2π)d

Ĵ(k)n (3.8)

Summing over n ≥ 0 yields

E0N =
∑

n≥0

∫

[−π,π]d

dk
(2π)d

Ĵ(k)n =
∫

[−π,π]d

dk
(2π)d

1
1− Ĵ(k)

(3.9)

whereby the claim follows. (A careful proof of the latter identity re-
quires justification of the exchange of the integral with the infinite
sum; one has to represent the LHS as a power series, perform the sum
and justify limits via appropriate convergence theorems.) ��
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As to the above examples, we have:

• n.n. & Yukawa potentials: As k → 0,

1− Ĵ(k) ∼ C|k|2 (3.10)

and so (Xn) is transient iff d ≥ 3.
• Power-law potentials: Here as k → 0,

1− Ĵ(k) ∼ C

⎧
⎪⎨

⎪⎩

|k|s−d, if s < d+ 2,
|k|2 log 1

|k| , if s = d+ 2,

|k|2, if s > d+ 2.
(3.11)

Hence (Xn) is transient iff d ≥ 3 OR s < min{d+ 2, 2d}.
(Note that the walk with s < d + 2 has a stable-law tail with index
of stability α = s − d.) A convex combination of the three coupling
constants will lead to a transient walk provided at least one of the
interactions involved therein (with non-zero coefficients) is transient.

3.2 Infrared Bound

The principal claim of this section is that the finiteness of the integral
in (3.6) is sufficient for the existence of a symmetry-breaking phase
transition in many spin systems of the kind (3.1). The reason is the
connection of the above random walk to the Gaussian free field (2.16)
(GFF) with P(x, y) := Jxy. Indeed, consider the field in a square box
Λ with, say, zero boundary condition. It turns out that

CovΛ(φx, φy) =
∑

n≥0

Px(Xn = y, τΛc = y) =: GΛ(x, y) (3.12)

where τΛc is the first exit time of the walk from Λ and GΛ denotes the
so called Green’s function in Λ. In particular, we have

VarΛ(φ0) = GΛ(0, 0) (3.13)

which, as we will see, tends to the integral (3.6) as Λ ↑ Z
d. Since

EΛ(φ0) = 0 due to our choice of the boundary condition, we conclude
{
Law(φ0) : Λ ⊂ Z

d
}

is tight iff (Xn) is transient (3.14)

Physicists actually prefer to think of this in terms of symmetry break-
ing: Formally, the Hamiltonian of the GFF is invariant under the
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transformation φx → φx + c, i.e., the model possesses a global spin-
translation symmetry. The symmetry group is not compact and so, to
define the model even in finite volume, the symmetry needs to be bro-
ken by boundary conditions. The existence of a limit law for φ0 can
be interpreted as the survival of the symmetry breaking in the ther-
modynamic limit — while non-existence means that the invariance is
restored in this limit.

Our goal is to show that qualitatively the same conclusions hold
also for the O(n)-spin system. Explicitly, we will prove:

Theorem 3.2. Let (Jxy) be one of the 3 interactions above. Then:

Global rotation symmetry
of O(n)-model is broken
at low temperatures

⇐⇒
Random walk driven
by (Jxy) is transient

We begin with the proof of the implication ⇐=. The principal tool
will be our next theorem which, for technical reasons, is formulated for
torus boundary conditions:

Theorem 3.3 (Infrared Bound). Let L be an even integer and
consider the model (3.1) on torus TL with Gibbs measure μL,β. Sup-
pose (Jxy) is one of the three interactions above and let

cL,β(x) := EμL,β
(S0 · Sx) (3.15)

Define ĉL,β(k) :=
∑
x∈TL

cL,β(x)eik·x. Then

ĉL,β(k) ≤
ν

2β
1

1− Ĵ(k)
, k ∈ T



L \ {0} (3.16)

where ν is the dimension of the spin vectors and T


L is the reciprocal

torus, T


L := {2π

L (n1, . . . , nd) : ni = 0, . . . , L− 1}.

The proof will require developing the technique of reflection posi-
tivity and is therefore postponed to Section 5.

Note that cL,β(x) is the spin-spin correlation function which, in
light of translation invariance of μL,β is a function of only the spatial
displacement of the two spins. The result has the following equivalent
formulation: For all (vx) ∈ C

TL with
∑
x vx = 0,

∑

x,y∈TL

vxv̄yEμL,β
(S0 · Sx) ≤

ν

2β

∑

x,y∈TL

vxv̄yGL(x, y) (3.17)
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where

GL(x, y) :=
1
Ld

∑

k∈T
�
L\{0}

eik·(x−y)

1− Ĵ(k)
(3.18)

Observe that the latter is the covariance matrix of the GFF on TL,
projected on the set of configurations with total integral zero (i.e., on
the orthogonal complement of constant functions). This is a meaningful
object because while the φx are not really well defined — due to the ab-
sence of the boundary — the differences φy−φx are. (These differences
are orthogonal to constant functions, of course.) A short formulation
of the infrared bound is thus:

The correlation of the spins in models (3.1) with one of the three
interactions above is dominated — as a matrix on the orthogonal
complement of constant functions in L2(TL) — by the covariance
of a GFF.

This fact is often referred to as Gaussian domination.

3.3 Spin-wave Condensation in O(n)-model

Having temporarily dispensed with the IRB, we will continue in our
original line of thought. Theorem 3.3 implies:

Corollary 3.4 (Spin-wave Condensation). Suppose |Sx| = 1. Then

EμL,β

( ∣∣∣
1
Ld

∑

x∈TL

Sx

∣∣∣
2
)
≥ 1− ν

2β
GL(0, 0) (3.19)

Proof. Let Ŝk :=
∑
x∈TL

Sxeik·x be the Fourier coefficient of the decom-
position of (Sx) into the so called spin waves. The IRB yields

EμL,β
|Ŝk|2 ≤

ν

2β
Ld

1− Ĵ(k)
, k ∈ T



L \ {0} (3.20)

On the other hand, Parseval’s identity along with |Sx| = 1 implies
∑

k∈T
�
L

|Ŝk|2 = Ld
∑

x∈TL

|Sx|2 = L2d (3.21)

The IRB makes no statement about Ŝ0 so we split it from the rest of
the sum:

1
L2d

|Ŝ0|2 = 1− 1
L2d

∑

k∈T
�
L\{0}

|Ŝk|2 (3.22)
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Now take expectation and apply (3.20):

EμL,β

( 1
L2d

|Ŝ0|2
)
≥ 1− ν

2β
1
Ld

∑

k∈T
�
L\{0}

1
1− Ĵ(k)

(3.23)

In light of (3.18), this is (3.19). ��
With (3.19) in the hand we can apply the same reasoning as for the

GFF: In the transient cases, GL(0, 0) converges to the integral (3.6) and
so the right-hand side has a finite limit. By taking β sufficiently large,
the limit is actually strictly positive. This in turn implies that the zero
mode of the spin-wave decomposition is macroscopically populated —
very much like the free Bose gas at Bose-Einstein condensation. Here
is how we pull the corresponding conclusions from TL onto Z

d:

Theorem 3.5 (Phase Coexistence in O(n)-model). Consider the
O(n)-model with n ≥ 1 and one of the three interactions above. Let

β0 :=
n

2

∫

[−π,π]d

dk
(2π)d

1
1− Ĵ(k)

(3.24)

Then for any β > β0 and any θ ∈ S
n−1 there exists μθ ∈ Gβ which is

translation invariant and ergodic such that

1
|ΛL|

∑

x∈ΛL

Sx −→
L→∞

m
 θ, μθ-a.s. (3.25)

for some m
 = m
(β) > 0.

Note that (3.25) implies that the measures μθ are mutually singular
with respect to one another. Note also that β0 is finite — and the
statement is not vacuous — if and only if the associated random walk
is transient.
Proof. Suppose, without loss of generality, that we are in the transient
case, i.e., β0 <∞. The idea of the proof is quite simple: We use (3.19)
to show that the free energy is not differentiable in an appropriately-
chosen external field when this field is set to zero. Then we apply
Theorem 2.5 to conclude the existence of the required distinct, ergodic
Gibbs measures.

Fix θ ∈ S
n−1 and define

f(h) := lim
L→∞

1
Ld

logEμL,β

(
ehθ·Ŝ0

)
(3.26)
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(The limit exists by Theorem 2.5.) We want to show that ∂
∂h+ f(0) > 0

(and thus, by symmetry, ∂
∂h− f(0) < 0). Corollary 3.4 yields

EμL,β

(
L−2d|Ŝ0|2

)
≥ β − β0

β
+ o(1) (3.27)

Since |Ŝ0| ≤ Ld, for any 0 < ε < 1 we have

EμL,β

(
L−2d|Ŝ0|2

)
≤ ε+ μL,β

(
|Ŝ0| ≥ εLd

)
(3.28)

and so

μL,β

(
|Ŝ0| ≥

1
2
β − β0

β
Ld

)
≥ 1

2
β − β0

β
+ o(1) (3.29)

By the O(n) symmetry of the torus measures μL,β , the law of Ŝ0/L
d is

rotationally invariant with non-degenerate “radius” distribution. This
implies

μL,β

(
θ · Ŝ0 ≥

1
4
β − β0

β
Ld

)
≥ Cn

β − β0

β
+ o(1) (3.30)

where C2 := 1/6 and, in general, Cn > 0 is an explicitly obtainable
constant. But this means that the exponent in the definition of f is at
least 1

4
β−β0
β Ld with uniformly positive probability and so

∂f

∂h+

∣∣∣
h=0
≥ β − β0

4β
(3.31)

Applying Theorem 2.5, for β > β0 and any θ ∈ S1 there exists a
translation invariant, ergodic Gibbs state μθ ∈ Gβ such that

Eμθ
(θ · Sx) =

∂f

∂h+

∣∣∣
h=0
> 0 (3.32)

Next we need to show that the states μθ are actually distinct. The
Ergodic Theorem implies

1
|ΛL|

∑

x∈ΛL

Sx −→
L→∞

m
θ̃, μθ-a.s. (3.33)

where θ̃ ∈ S
n−1 and where m
 > 0 is the magnitude of the derivative.

Note that, in light of (3.32) and the translation invariance of μθ,

m
 θ · θ̃ =
∂f

∂h+

∣∣∣
h=0

(3.34)
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The distinctness of μθ will follow once we prove (3.25), i.e., θ = θ̃. (This
is, of course, intuitively obvious because the way we constructed μθ
indicates that the law of Sx under μθ should be biased in the direction
of θ.)

Suppose θ̃ �= θ. Find a rotation A ∈ O(n) such that Aθ̃ = θ.
Let μ̃ be the measure such that Eμ̃(f(S)) := Eμθ

(f(AS)) for all lo-
cal functions f . (The existence of such a measure follows from the
Kolmogorov Extension Theorem.) Since both the Hamiltonian and the
a priori measure are O(n)-invariant, we have μ̃ ∈ Gβ . But (3.33) im-
plies Eμθ

(Sx) = m
 θ̃, and so from (3.34) we have

Eμ̃(θ · Sx) = Eμθ
(θ ·ASx) = m
 |θ|2 >

θ̃ �=θ
m
 θ · θ̃ =

∂f

∂h+

∣∣∣
h=0

(3.35)

As μ̃ is a Gibbs measure, this contradicts the general bounds in
Theorem 2.5. Hence, we must have θ = θ̃ after all. ��

The above statement and proof are formulated for the specific case of
the O(n) model. A similar proof will apply the existence of a symmetry-
breaking phase transition at low temperatures in the Ising, Potts and
the liquid-crystal models in all transient dimensions. As the Ising and
Potts model have only a discrete set of spin states, a symmetry-breaking
transition will occur generally in all dimensions d ≥ 2. However, this
has to be proved by different methods than those employed above (e.g.,
by invoking chessboard estimates).

Our next goal is to establish the complementary part of Theorem 3.2,
i.e., the implication =⇒, which asserts the absence of symmetry break-
ing in the recurrent cases. This argument predates the other direction
by 20 years and bears the name of its discoverers:

Theorem 3.6 (Mermin-Wagner Theorem). Let n ≥ 2 and con-
sider the O(n)-model with non-negative interactions constants (Jx,y)
satisfying the conditions (I1,I2) from Sect. 3.1. Suppose the cor-
responding random walk is recurrent. Then every μ ∈ Gβ is in-
variant under any simultaneous (i.e., homogeneous) rotation of all
spins.

Proof. We will show that the spins can be arbitrarily rotated at an
arbitrary small cost of the total energy. (This is why we need n ≥ 2.)
We will have to work with inhomogeneous rotations to achieve this, so
let ϕx be a collection of numbers with {x : ϕx �= 0} finite and let iR be
a unit element of the Lie algebra o(n), i.e., eiRα is a rigid rotation of
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the unit sphere by angle α about a particular axis. Let ωϕ be the map
on configuration space acting on individual spins via

ωϕ(Sx) := eiϕxRSx, x ∈ Z
d (3.36)

To investigate the effect of such an inhomogeneous rotation on the
Hamiltonian, note that

ωϕ(Sx) · ωϕ(Sy) = Sx · ei(ϕy−ϕx)RSy

= Sx · Sy − Sx · [1− ei(ϕy−ϕx)R]Sy
(3.37)

Hence the energy of a configuration in any block Λ ⊃ {x : ϕx �= 0}
transforms as

HΛ(ωϕ(S)) = HΛ(S) +�H (3.38)

where
�H :=

1
2

∑

x,y

Jxy Sx · [1− ei(ϕy−ϕx)R]Sy (3.39)

Using that �H depends only on the portion of the spin configuration
in Λ, a simple application of the DLR condition shows that, for any
local function f ,

Eμ(f ◦ ωϕ) = Eμ(fe−β�H) (3.40)

We will now let ϕx → α in a specific way that ensures �H → 0; this
will permit us to extract the desired conclusion by limiting arguments.

First we will need to control the ϕ-dependence of�H, so we expand
the exponential:

�H =− i
2

∑

x,y

Jxy (Sx ·RSy)(ϕy − ϕx)

+
1
4

∑

x,y

Jxy (RSx ·RSy)(ϕy − ϕx)2 + · · ·
(3.41)

In the first term we note that the self-adjointness of R — valid by the
choice of iR as an element of the Lie algebra — implies that Jxy (Sx ·
RSy) is symmetric under the exchange of x and y. Since (ϕy − ϕx) is
antisymmetric and finitely supported, the sum is zero. Estimating the
remainder by the quadratic term, we thus get

|�H| ≤ C
∑

x,y

Jxy(ϕy − ϕx)2 = 2CE1−J(ϕ,ϕ) (3.42)

for some constant C < ∞. Here we used that (RSx · RSy) is bounded
and recalled the definition of the Dirichlet form E1−J(·, ·) of the random
walk driven by the (Jx,y)’s.
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Our next task will be to control the Dirichlet form under the condi-
tion that ϕ tends to α in every finite set. To that end we fix 0 < R <∞
and set

ϕx := αPx(τ0 < τΛc
R
) (3.43)

This function equals α at x = 0, zero on Λc
R and is harmonic (with

respect to the generator of the random walk) in ΛR \{0}. A calculation
shows

E1−J(ϕ,ϕ) =
∑

x

ϕx
∑

y

Jx,y(ϕx − ϕy)

=
harmonic or
zero in {0}c

α
∑

y

J0,y(α− ϕy)
(3.44)

But the recurrence of the associated random walk implies that ϕy → α
as R → ∞ for every y and since the Jxy’s are summable, the right-
hand side tends to zero by the Dominated Convergence Theorem. Thus
�H → 0 as R→∞ and so applying R→∞ to (3.40) with the choice
(3.43) yields

Eμ(f ◦ ωα) = Eμ(f) (3.45)

for every continuous local function f . Thereby we conclude that μ is
invariant under simultaneous rotation of all spins. ��

3.4 Literature Remarks

The content of the entire section is very classical. The Infrared Bound
(and its proof based on reflection positivity) was discovered in the sem-
inal work of Fröhlich, Simon and Spencer [50] from 1976 where it was
also applied to prove a phase transition in the O(n)-model (as well as
the isotropic Heisenberg and other models). Dyson, Lieb and Simon [38]
showed how to adapt the method to a (somewhat more limited) class
of quantum spin models. The technique was further developed and
its applications extended in two papers of Fröhlich, Israel, Lieb and
Simon [46, 47].

Thanks to the representation (2.12), the proof of a long-range order
in the liquid-crystal model, derived by Angelescu and Zagrebnov [6],
follows the same route as for the O(n) model. However, the type of long-
range order that is concluded for the actual spin system is different.
Indeed, let μ be a (weak) cluster point of the torus states. Then

lim
L→∞

1
|ΛL|

∑

x∈ΛL

[
(S0 · Sx)2 − 1/n

]
> 0 (3.46)
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with a positive probability under μ. (The limit exists by the Pointwise
Ergodic Theorem.) As μ is O(n)-invariant, if Sx were asymptotically
independent of S0 for large x, we would expect Eμ(S0 · Sx)2 → 1/n

as |x| → ∞. Apparently, this is not the case, the direction of Sx remains
heavily correlated with the direction of S0 for arbitrary x, i.e., there is
an orientational long range order.

Whether or not the O(n) symmetry of the law of Sx is broken is an
open (and important) question. (The law of each individual Sx is in-
variant under the flip Sx ↔ −Sx and so the magnetization is zero in all
states.) As noted before, other models of liquid crystals based on dimers
on Z

2 were considered by Heilmann and Lieb [62] and Abraham and
Heilmann [1] prior to the work [6]. There an orientational long-range
order was proved using chessboard estimates; the question of absence
of complete translational ordering (i.e., breakdown of translation in-
variance) remained open.

The Mermin-Wagner theorem goes back to 1966 [82]. Various inter-
esting mathematical treatments and extensions followed [34, 87, 49];
the argument presented here is inspired by the exposition in Simon’s
book [97]. A fully probabilistic approach to this result, discovered by
Dobrushin and Shlosman [34], has the advantage that no regularity
conditions need to be posed on the spin-spin interaction provided it
takes the form V (Sx − Sy); cf the recent paper by Ioffe, Shlosman and
Velenik [65]. Finally, we remark that a beautiful and more in-depth
exposition of this material — including quantum systems — was pre-
sented at the Prague School in 1996 by Bálint Tóth; his handwritten
lecture notes should be available online [103].

The basis of the Mermin-Wagner theorem, as well as its extension,
is the continuum nature of the spin space. Indeed, in the Ising (and
also Potts) model, a low-temperature symmetry breaking occurs even
in some recurrent dimensions; e.g., in d = 2 for the nearest-neighbor
interactions. For what determines the presence and absence of symme-
try breaking in d = 1, see the work of Aizenman, Chayes, Chayes and
Newman [3] and references therein.

The connection with random walk is, of course, made possible
by our choice to work with non-negative couplings. However, most
of the quantitative conclusions of this section hold without reference
to random walks. For detailed expositions of the theory of random
walks we recommend the monographs by Spitzer [100] and Lawler [76];
the material naturally appears in most graduate probability textbooks
(e.g., Durrett [36]).

It is interesting to note that even in d = 2, the nearest-neighbor
O(n) model exhibits a phase transition when n = 2. Namely, while
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the Gibbs state is unique at all β < ∞, for large β it exhibits power
law decay of correlations with β-dependent exponents. This regime
is (again, after its discoverers) referred to as the Kosterlitz-Thouless
phase [70]. A rigorous treatment exits, based on renormalization the-
ory and connection with Coulomb gas, thanks to the pioneering work of
Fröhlich and Spencer [51]; see also more recent papers by Dimock and
Hurd [31]. This is of much interest in light of recent discovery of new
conformally-invariant planar processes — the Schramm-Loewner evolu-
tion (a.k.a. SLE). No such phenomenon is expected when n ≥ 3 though
there is a minor opposition to this (e.g., Patrasciou and Seiler [85]).

4 Infrared Bound & Mean-field Theory

In this chapter we will discuss how the infrared bound can be used
to control the error in so-called mean-field approximation. Unlike the
spin-wave condensation, which is concerned primarily with the infrared
— i.e., small-k or large spatial scale — content of the IRB, here will
make the predominant use of the finite-k — i.e., short range — part of
the IRB. (Notwithstanding, the finiteness of the integral (3.6) is still a
prerequisite.)

4.1 Mean-field Theory

Mean-field theory is a versatile approximation technique frequently
used by physicists to analyze realistic physical models. We begin by
a simple derivation that underscores the strengths, and the shortcom-
ings, of this approach.

Consider a lattice spin model with the usual Hamiltonian (3.1).
Pick a translation invariant Gibbs measure μ ∈ Gβ and consider the
expectation of the spin at the origin. The conditional definition of Gibbs
measures (the DLR condition) allows us to compute this expectation
by first conditioning on all spins outside the origin. Indeed, the one-spin
Gibbs measure is determined by the (one-spin) Hamiltonian

H{0}(S) = −
∑

x

J0,x S0 · Sx = −S0 ·
∑

x

J0,xSx = −S0 ·M0 (4.1)

where we introduced the shorthand

M0 :=
∑

x

J0,xSx (4.2)
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Thus, by the DLR,

Eμ(S0) = Eμ

(
Eμ0(S0 eβS0·M0)
Eμ0(eβS0·M0)

)
(4.3)

where, abusing the notation slightly, the “inner” expectations are only
over S0 — M0 acts as a constant here — and the outer expectation is
over the spins in Z

d \ {0}, and thus over M0.
So far the derivation has been completely rigorous but now comes

an ad hoc step: We suppose that the random variable M0 is strongly
concentrated about its average so that we can replace it by this average.
Denoting

m := Eμ(S0) (4.4)

we thus get that m should be an approximate solution to

m =
Eμ0(S eβS·m)
Eμ0(eβS·m)

(4.5)

This is the so called mean-field equation for the magnetization.
Besides the unjustified step in the derivation, a serious practical

problem with (4.5) is that it often has multiple solutions. Indeed, for
the set of points (β,m) that obey this equation, one typically gets a
picture like this:

β

m

β0

Here, for β < β0, the only solution is m = 0 — this is always a solution
whenever Eμ0(S) = 0 — but at β = β0, two new branches appear and
coexist over an interval of β’s. It is clear that as β varies, the “physical”
solution must undergo some sort of jump, but it is not possible to tell
where this jump occurs on the basis of equation (4.5) alone. For that
one has to go beyond the heuristic derivation presented above.
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As is standard, one comes up with an additional “selection” principle
that determines which solution is “physical.” At the level of classical
thermodynamics, this is done by postulating that the solution must
minimize an appropriate free energy function. In the choice of this
function we will be guided by the fact that there is a proper statistical-
mechanical system for which the above derivations can be explicitly
validated by way of large-deviation theory. This system is the corre-
sponding model on the complete graph.

Consider a graph on N vertices with each pair of vertices joined by
an undirected edge. At each vertex x = 1, . . . , N we have a spin Sx
with i.i.d. a priori law μ0. Each spin interacts with every other spin;
the interaction Hamiltonian is given by

HN (S) := − 1
2N

N∑

x,y=1

Sx · Sy (4.6)

The normalization by 1/N ensures that the energy grows proportionally
to N ; the “2” in the denominator compensates for counting each pair
of spins twice.

To derive the formula for the free energy function, consider first the
cumulant generating function of the measure μ0,

G(h) := logEμ0

(
eh·S

)
, h ∈ R

ν (4.7)

Its Legendre transform,

S (m) := inf
h∈Rν

[
G(h)− h ·m

]
(4.8)

defines the entropy which, according to Cramér’s theorem, is the rate
of large-deviation decay in

μ0

( N∑

x=1

Sx ≈ mN
)

= e−NS (m)+o(N) (4.9)

(The function is infinite outside Conv(Ω), the convex hull of Ω and
the set of possible values of the magnetization.) Next we inject the
energy into the mix and look at the Gibbs measure. To describe what
configurations dominate the partition function, and thus the Gibbs
measure, we identify the decay rate of the probability

μ0

(
e

β
2N

∑N
x,y=1 Sx·Sy1{∑x Sx ≈mN}

)
= e−NΦβ(m)+o(N) (4.10)
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Here the rate function

Φβ(m) := −β
2
|m|2 −S (m) (4.11)

is the desired mean-field free-energy function. The physical solutions
are clearly obtained as the absolute minima of m �→ Φβ(m). This is
actually completely consistent with (4.5):

Lemma 4.1. We have

∇Φβ(m) = 0 ⇔ m = ∇G(βm) (4.12)

Explicitly, the solutions to (4.5) are in bijection with the extreme points
of m �→ Φβ(m).

Proof. This is a simple exercise on the Legendre transform. First we note
that ∇Φβ(m) = 0 is equivalent to βm = −∇S (m). The convexity of G
implies that there is a unique hm such that S (m) = G(hm)−m · hm.
Furthermore, hm depends smoothly on m and we have ∇G(hm) = m.
It is easy to check that then ∇S (m) = −hm. Putting this together
with our previous observations, we get that

∇Φβ(m) = 0 ⇔ βm = hm ⇔ m = ∇G(βm) (4.13)

It remains to observe thatm = ∇G(βm) is a concise way to write (4.5).
��

Lemma 4.1 shows that the appearance of multiple solutions to (4.5)
coincides with the emergence of secondary local maxima/minima.

4.2 Example: The Potts Model

It is worthwhile to demonstrate the above general formalism on the
explicit example of the Potts model. We will work with the tetrahedral
representation, i.e., on the spin space Ω := {v̂1, . . . , v̂q}. The mean-field
free energy function is best expressed in the parametrization using the
mole fractions, x1, . . . , xq, which on the complete graph represent the
fractions of all vertices with spins pointing in the directions v̂1, . . . , v̂q,
respectively. Clearly,

q∑

i=1

xi = 1 (4.14)

The corresponding magnetization vector is

m = x1v̂1 + · · ·+ xqv̂q. (4.15)
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In this notation we have

Φβ(m) =
q∑

k=1

(
−β

2
x2
k + xk log xk

)
. (4.16)

It is not surprising, but somewhat non-trivial to prove (see [9,
Lemma 4.4]) that all interesting behavior of Φβ occurs “on-axes”
that is, the absolute minimizers — and, in fact, all local extrema — of
Φβ occur in the directions of one of the spin states. (Which direction we
choose is immaterial as they are related by symmetry.) The following
picture shows the qualitative look of the function m �→ Φβ(mv̂1) at four
increasing values of β:

Here the function first starts convex and, as β increases, develops a
secondary local minimum (plus an inevitable local maximum). For β
even larger, the secondary minimum becomes degenerate with the one
at m = 0 and eventually takes over the role of the global minimum.
With these new distinctions, the plot of solutions to the mean-field
equation for the magnetization becomes:

β

m

local min

local max

βt

Note that the local maximum eventually merges with the local mini-
mum at zero — at which point zero becomes a local maximum. The
jump in the position of the global minimum occurs at some βt, which is
strictly larger than the point β0 where the secondary minima/maxima
first appear.
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4.3 Approximation Theorem & Applications

The goal of this section is to show that, with the help of the IRB,
the conclusions of mean-field theory can be given a quantitative form.
Throughout we restrict ourselves to interactions of the form (3.1) and
the coupling constants being one of the 3 types above.

Definition 4.2. We say that a measure μ ∈ Gβ is a torus state if it is
either a (weak) cluster point of measures μL,β or can be obtained from
such cluster points by perturbing either β or μ0 or the inner product
between spins.

The reason for the second half of this definition is that the “opera-
tions” thus specified preserve the validity of the IRB. For such states
we prove:

Theorem 4.3. Suppose |Sx| ≤ 1. Let μ ∈ Gβ be a translation-
invariant, ergodic, torus state and define

m
 := Eμ(S0). (4.17)

Let Φβ be the mean-field free energy function corresponding to this
model. Then

Φβ(m
) ≤ inf
m∈Conv(Ω)

Φβ(m) +
νβ

2
Id (4.18)

where

Id :=
∫

[−π,π]d

dk
(2π)d

Ĵ(k)2

1− Ĵ(k)
(4.19)

Note that the integral is finite iff the random walk corresponding
to (Jxy) is transient. However, unlike for Green’s function, Id represents
the expected number of returns back to the origin after the walk has
left the origin. Thus, in strongly transient situations one should expect
that Id is fairly small. And, indeed, we have the following asymptotics:

• n.n. interactions:

Id ∼
1
2d
, d→∞. (4.20)

• Yukawa potentials : If d ≥ 3,

Id ≤ Cμd. (4.21)
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• Power-law potentials: If d ≥ 3 OR s < min{d+ 2, 2d},

Id ≤ C(s− d). (4.22)

Of course, one is able to make the integral small for interactions with
power law tails even when s is not too close to d: Just take a mix-
ture of Yukawa and power-law with positive coefficients and let μ be
sufficiently small. Within the class of above models, we can rephrase
Theorem 4.3 as:

Physical magnetizations nearly minimize
the mean-field free energy function

This is justified because, as it turns out, all relevant magnetizations
can be achieved in ergodic torus states. Let us again demonstrate the
conclusion on the example of the q-state Potts model:

Theorem 4.4. Let q ≥ 3 and suppose that Id � 1/q. Then there is βt ∈
(0,∞) and translation-invariant, ergodic measures ν0, ν1, . . . νq ∈ Gβt
such that

|Eν0(Sx)| � 1 (4.23)

and
Eνj (Sx) = m
 v̂j , j = 1, . . . , q, (4.24)

where m
 ≥ 1/2. In particular, the 3-state Potts model undergoes a
first-order phase transition provided the spatial dimension is sufficiently
large.

This result is pretty much the consequence of the pictures in
Sect. 4.1. Indeed, including the error bound (4.18), the physical mag-
netization is confined to the shaded regions:

Thus, once the error is smaller than the “hump” separating the two
local minima, there is no way that the physical magnetization can
change continuously as the temperature varies. This is seen even more
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dramatically once we mark directly into the mean-field magnetization
plot the set of values of the magnetization allowed by the inequality
(4.18):

β

m

βt

(To emphasize the effect, the plots are done for the q = 10 state Potts
model rather than the most interesting case of q = 3.) Notice that the
transition is bound to occur rather sharply and very near the mean-
field value of βt; explicit error bounds can be derived, but there is no
need to state them here.

An additional argument is actually needed to provide a full proof of
(4.24). Indeed, we claim that the symmetry breaking happens exactly
in the direction of one of the spin states while the approximation by
mean-field theory only guarantees that the expectation is near one of
these directions.
Proof of (4.24), sketch. Consider an ergodic Gibbs state μ with m
 :=
Eμ(Sx) �= 0 at inverse temperature β. Given a sample σ = (σx) from μ,
at each unordered pair 〈x, y〉 of vertices from Z

d let

ηxy := 1{σx=σy}Zxy (4.25)

where (Zxy) are a priori independent, zero-one valued random variables
with

P(Zxy = 1) = 1− P(Zxy = 0) := 1− e−βJxy (4.26)

This defines a coupling of μ with a random cluster measure — the
distribution of the η’s — which, by the fact that the extension comes
from i.i.d. random variables, is also ergodic.

When m
 �= 0, the η-marginal features a unique infinite connected
component of edges 〈x, y〉 with ηxy = 1 whose (site) density is propor-
tional to |m
|. By the construction, the spin variables take a (constant)
value on each connected component, which is a.s. unique (by ergodic-
ity) on the infinite one and uniform on the finite ones. Thus, the bias
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of the spin distribution comes only from the infinite component and so
it points in one of the q spin directions. The claim thus follows. ��

4.4 Ideas from the Proofs

A fundamental technical ingredient of the proof is again provided by
the IRB, so throughout we will assume one of the three interactions
discussed above. However, we will need the following enhanced version:

Lemma 4.5 (IRB Enhanced). Suppose the random walk driven by
the (Jxy) is transient and let G(x, y) denote the corresponding Green’s
function on Z

d. Let μ ∈ Gβ be a translation-invariant, ergodic, torus
state and let us denote m
 := Eμ(S0). Then for all (vx)x∈Zd ∈ C

Z
d

with
finite support,

∑

x,y

vxv̄y Eμ
(
(Sx −m
) · (Sy −m
)

)
≤ ν

2β

∑

x,y

vxv̄yG(x, y). (4.27)

Proof. The IRB on torus survives weak limits and so we know that, for
every (wx) with finite support and

∑
xwx = 0,

∑

x,y

wxw̄y Eμ
(
Sx · Sy

)
≤ ν

2β

∑

x,y

wxw̄yG(x, y) (4.28)

where

G(x, y) := lim
L→∞

GL(x, y) =
∫

[−π,π]d

dk
(2π)d

eik·(x−y)

1− Ĵ(k)
(4.29)

What separates (4.28) from (4.27) are the m
 terms in the expectation
on the left and the absence of the restriction on the sum of vx. The
former is remedied easily; indeed, the restriction

∑
xwx = 0 allows us

to put the m
 terms at no additional cost.
To address the latter issue, suppose (vx) has finite support but let

now
∑
x vx be arbitrary. Let ΛL ⊂ Z

d contain the support of (vx). To
convert to the previous argument, let

aL :=
1
|ΛL|

∑

x

vx (4.30)

and
wx := vx − aL1ΛL

(x) (4.31)
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Note that
∑
xwx = 0. Then

∑

x,y

wxw̄y Eμ
(
(Sx−m
)·(Sy−m
)

)
=
∑

x,y

vxv̄y Eμ
(
(Sx−m
)·(Sy−m
)

)

− 2Eμ

([
aL

∑

x∈ΛL

(Sx −m
)
]
·
[∑

y

vy(Sy −m
)
])

+ Eμ

(∣∣∣aL
∑

x∈ΛL

(Sx −m
)
∣∣∣
2
)

(4.32)

But ergodicity of μ implies that

Eμ

(∣∣∣
1
|ΛL|

∑

x∈ΛL

(Sx −m
)
∣∣∣
2
)
−→
L→∞

0 (4.33)

and so, by Cauchy-Schwarz, the last two terms in (4.32) converge to
zero as L→∞. Now apply (4.28) and pass to the limit L→∞ there.
A direct calculation (and the Riemann-Lebesgue lemma) shows that

1
|ΛL|

∑

x∈ΛL

G(x, y) −→
L→∞

0 (4.34)

and so the terms involving aL on the right-hand side of (4.27) suffer
a similar fate. This means that the left-hand sides of (4.27–4.28) tend
to each other, and same for the right-hand sides. The desired bound
(4.27) is thus a limiting version of (4.28). ��

Clearly, the restriction to finitely-supported (vx) is not necessary;
instead, one can consider completions of this set in various reasonable
norms. The above formulation has an immediate, but rather fundamen-
tal, consequence:

Corollary 4.6 (Key Estimate). Let μ ∈ Gβ be an ergodic torus state
and let m
 := Eμ(Sx). Then we have

Eμ

( ∣∣∣
∑

x

J0,x Sx −m

∣∣∣
2
)
≤ ν

2β
Id. (4.35)

Proof. Choose vx := J0,x and note that with this choice the left-hand
side of (4.27) becomes the left-hand side of (4.35). As to the right-hand
side of (4.27), we get

ν

2β

∑

x,y

∫

[−π,π]d

dk
(2π)d

eik·(x−y)

1− Ĵ(k)
J0,xJ0,y (4.36)

Recalling the definition of Ĵ(k), this yields the desired error term. ��
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This corollary provides a justification of the ad hoc step in the
derivation of mean-field theory: Indeed, once Id is small, the variance
of M0 is small and so M0 is with high probability close to its average.

The rest of the proof of Theorem 4.3 is based on inequalities linking
the mean-field free energy with the actual magnetization of the system;
this part of the proof works for general non-negative coupling constants
satisfying conditions (I1-I2) from Sect. 3.1. The relevant observations
are as follows:

Proposition 4.7. Let μ ∈ Gβ be translation invariant and let m
 :=
Eμ(Sx).
(1) We have

Φβ(m
) ≤ inf
m∈Conv(Ω)

Φβ(m) +
β

2

∑

x∈Zd

J0,x

[
Eμ(S0 · Sx)− |m
|2

]
(4.37)

(2) Suppose also J0,x ≥ 0 and |Sx| ≤ 1. Then

∑

x∈Zd

J0,x

[
Eμ(S0 · Sx)− |m
|2

]
≤ β Eμ

( ∣∣∣
∑

x

J0,x Sx −m

∣∣∣
2
)

(4.38)

Proof of (1). The proof is based on convexity inequalities linking the
mean-field free energy and the characteristics of the actual system.
Fix Λ ⊂ Z

d and let ZΛ be the partition function in Λ. A standard
example of such convexity inequality is

ZΛ ≥ exp
{
−|Λ| inf

m∈Conv(Ω)
Φβ(m) +O(∂Λ)

}
. (4.39)

To prove this we pick m in the (relative) interior of Conv(Ω) and define
a tilted measure

μh(dS) := eh·S−G(h)μ0(dS) (4.40)

with h adjusted so that Eμh
(S) = m. (Such h exists for each m in the

relative interior of Conv(Ω), by standard arguments for the Legendre
transform.) We then get

ZΛ = E⊗μh

(
e−βHΛ(S)−h·MΛ+|Λ|G(h)

)
(4.41)

where we introduced the shorthand

MΛ :=
∑

x∈Λ
Sx (4.42)
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Now apply Jensen to get the expectation into the exponent; the product
nature of ⊗μh implies that E⊗μh

(HΛ(S)) = −|Λ|12 |m|2 +O(∂Λ) and so
(4.39) follows by noting that G(h) − h ·m = S (m) due to our choice
of h, and subsequently optimizing over all admissible m.

Now fix a general h ∈ R
ν and let μ be a Gibbs measure as specified

in the claim. First we note that the DLR condition implies

Eμ(e+βHΛ+h·MΛZΛ) = E⊗μ0

(
eh·MΛ

)
= e|Λ|G(h) (4.43)

The ZΛ term can be bounded away via (4.39); Jensen’s inequality then
gives

β Eμ(HΛ)+ |Λ|h ·m
−|Λ| inf
m∈Conv(Ω)

Φβ(m)+O(∂Λ) ≤ |Λ|G(h) (4.44)

Next, translation invariance of μ yields

Eμ(HΛ) = −|Λ|1
2

∑

x

J0,xEμ(S0 · Sx) +O(∂Λ) (4.45)

and so dividing by Λ and taking Λ ↑ Z
d along cubes gets us

−β
2

∑

x

J0,xEμ(S0 · Sx) − inf
m∈Conv(Ω)

Φβ(m) ≤ G(h)− h ·m
 (4.46)

Optimizing over h turns the right-hand side into S (m
). Adding 1
2 |m
|2

on both sides and invoking (4.11) now proves the claim. ��

Proof of (2). Let us return to the notation M0 :=
∑
x J0,xSx. The

left-hand side of (4.38) can then be written as Eμ(S0 ·M0) − |m
|2.
Since J0,0 = 0, an application of the DLR condition yields

Eμ(M0 · S0) = Eμ
(
M0 · ∇G(βM0)

)
(4.47)

The DLR condition also implies

m
 = Eμ(M0) = Eμ[∇G(βM0)] (4.48)

and so we have

Eμ(S0 ·M0)− |m
|2

= Eμ
(
(M0 −m
) ·

(
∇G(βM0)−∇G(βm
)

))
(4.49)

But |Sx| ≤ 1 implies that the Hessian of G is dominated by the identity,
∇∇G(m) ≤ id at any m ∈ Conv(Ω) — assuming Jx,y ≥ 0 — and so
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(M0 −m
) ·
(
∇G(βM0)−∇G(βm
)

)
≤ β|M0 −m
|2 (4.50)

by the Mean-Value Theorem. Taking expectations proves (4.38). ��
Theorem 4.3 now follows by combining Proposition 4.7 with

Corollary 4.6. Interestingly, (4.37) gives
∑

x∈Zd

J0,xEμ(S0 · Sx) ≥ |m
|2 (4.51)

i.e., the actual energy density always exceeds the mean-field energy
density.

4.5 Literature Remarks

The inception of mean-field theory goes back to Curie [28] and Weiss
[105]. One of the early connections to the models on the complete graph
appears in Ellis’ textbook on large-deviation theory [40]. Most of this
section is based on the papers of Biskup and Chayes [9] and Biskup,
Chayes and Crawford [10]. The Key Estimate had been used before in
some specific cases; e.g., for the Ising model in the paper by Bricmont,
Kesten, Lebowitz and Schonmann [22] and for the q-state Potts model
in the paper by Kesten and Schonmann [69]. Both these works deal with
the limit of the magnetization as d→∞; notwithstanding, no conclu-
sions were extracted for the presence of first-order phase transitions in
finite-dimensional systems.

The first-order phase transition in the q-state Potts model has first
been proved by Kotecký and Shlosman [69] but the technique works
only for extremely large q. The case of small q has been open. The
upshot of the present technique is that it replaces q by d or interac-
tion range in its role of a “large parameter.” The price to pay is the
lack of explicit control over symmetry: We expect that the measure ν0
in Theorem 4.4 is actually “disordered” and Eν0(Sx) = 0. This would
follow if we knew that the magnetization in the Potts model can be
discontinuous only at the percolation threshold — for the Ising model
this was recently proved by Bodineau [19] — but this is so far known
only in d = 2 (or for q very large). The coupling in the proof of (4.24) is
due to Edwards and Sokal [39]; for further properties see Grimmett [61]
or Biskup, Borgs, Chayes and Kotecky [8]. The uniqueness of the infi-
nite connected component is well known in the nearest-neighbor case
from a beautiful argument of Burton and Keane [23]; for the long-range
models it has to be supplied by a percolation bound dominating the
number of edges connecting a box of side L to its complement.
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The requirement Id � 1/q is actually an embarrassment of the theory
as the transition should become more pronounced, and thus easier to
control, with increasing q. Thus, even for nearest-neighbor case, we
still do not have a dimension in which all q ≥ 3 state Potts models go
first order. (It is expected that this happens already in d = 3.) The
restriction to transient dimensions is actually not absolutely necessary;
cf recent work Chayes [24].

It is natural to ask whether one can say anything about the
continuum-q extension of the Potts model, the random cluster model;
see Grimmett [61]. Unfortunately, the main condition for proving the
IRB, reflection positivity, holds if and only if q is integer (Biskup [7]).

Another model for which this method yields a novel result is
the liquid-crystal model discussed in Sect. 2.2. Here Angelescu and
Zagrebnov [6] proved that symmetry breaking (for the order param-
eter maxαEμ[S

(α)
x ]2 − 1/n) occurs at low temperatures by exhibiting

spin-wave condensation; cf remarks at the end of Chapter 3. In [9]
it has been shown that, for n ≥ 3, the order parameter undergoes a
discontinuous transition at intermediate temperatures; van Enter and
Shlosman [41, 42] later proved such transitions in highly non-linear
cases. Similar “mean-field driven” first order phase transitions have also
been proved for the cubic model [9] and the Blume-Capel model [10].

Once the general theory is in place, the proof of a phase transition
for a specific model boils down to the analysis of the mean-field free
energy function. While in principle always doable, in practice this may
be quite a challenge even in some relatively simple examples. See, e.g.,
[9, Sect. 4.4] what this requires in the context of the liquid-crystal
model.

Finally, we note that the IRB has been connected to mean-field the-
ory before; namely, in the work of Aizenman [2] (cf also Fröhlich [45]
and Sokal [98]) in the context of lattice field theories and that of Aizen-
man and Fernández in the context of Ising systems in either high spatial
dimensions [4] or for spread-out interactions [5]. A representative re-
sult from these papers is that the critical exponents in the Ising model
take mean-field values above 4 dimensions. The IRB enters as a tool to
derive a one-way bound on the critical exponents. Unfortunately, the
full conclusions are restricted to interactions that are reflection posi-
tive; a non-trivial extension was obtained recently by Sakai [90] who
proved the IRB — and the corresponding conclusions about the critical
exponents — directly via a version of the lace expansion.
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5 Reflection Positivity

In the last two sections we have made extensive use of the infrared
bound. Now is the time to prove it. This will require introducing the
technique of reflection positivity which, somewhat undesirably, links
long-range correlation properties of the spin models under considera-
tion to the explicit structure of the underlying graph. Apart from the
infrared bound, reflection positivity yields also the so called chessboard
estimate which we will use extensively in Chapter 6.

5.1 Reflection Positive Measures

We begin by introducing the basic setup for the definition of reflection
positivity: Consider the torus TL of side L with L even. The torus has
a natural reflection symmetry along planes orthogonal to one of the
lattice directions. (For that purpose we may think of TL as embedded
into a continuum torus.) The corresponding “plane of reflection” P has
two components, one at the “front” of the torus and the other at the
“back.” The plane either passes through the sites of TL or bisects bonds;
we speak of reflections through sites or through bonds, respectively. The
plane splits the torus into two halves, T

+
L and T

−
L , which are disjoint

for reflections through bonds and obey T
+
L ∩ T

−
L = P for reflections

through sites.
Let A± denote the set of all functions f : ΩTL → R that depend only

on the spins in T
±
L . Let ϑ denote the reflection operator, ϑ : A± → A∓,

which acts on spins via
ϑ(Sx) := Sϑ(x) (5.1)

Clearly, ϑ is a morphism of algebra A+ onto A− and ϑ2 = id.

Definition 5.1 (Reflection Positivity). A measure μ on ΩTL is
reflection positive (RP) with respect to ϑ if

(1) For all f, g ∈ A+,
Eμ(f ϑg) = Eμ(g ϑf) (5.2)

(2) For all f ∈ A+,
Eμ(f ϑf) ≥ 0 (5.3)

Note that the above implies that f, g �→ Eμ(f ϑg) is a positive-
semindefinite symmetric bilinear form. Condition (5.2) is usually auto-
matically true — it requires only ϑ-invariance of μ— so it is the second
condition that makes this concept non-trivial (hence also the name).
Here we first note that the concept is not entirely vacuous:
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Lemma 5.2. The product measure, μ =
⊗
μ0, is RP with respect to

all reflections.

Proof. First consider reflections through bonds. Let f, g ∈ A+. Since
T

+
L ∩T

−
L = ∅, the random variables f and ϑg are independent under μ.

Hence,
Eμ(f ϑg) = Eμ(f)Eμ(ϑg) = Eμ(f)Eμ(g) (5.4)

whereby both conditions in Definition 5.1 follow.
For reflections through sites, we note that f and ϑg are independent

conditional on SP . Invoking the reflection symmetry of μ(·|SP ), we get

Eμ(f ϑg|SP ) = Eμ(f |SP )Eμ(ϑg|SP ) = Eμ(f |SP )Eμ(g|SP ) (5.5)

Again the conditions of RP follow by inspection. ��
A fundamental consequence of reflection positivity is the Cauchy-

Schwarz inequality
[
Eμ(f ϑg)

]2 ≤ Eμ(f ϑf)Eμ(g ϑg) (5.6)

Here is an enhanced, but extremely useful, version of this inequality:

Lemma 5.3. Let μ be RP with respect to ϑ and let A,B,Cα, Dα ∈ A+.
Then

[
Eμ(eA+ϑB+

∑
α Cα ϑDα)

]2

≤
[
Eμ(eA+ϑA+

∑
α Cα ϑCα)

] [
Eμ(eB+ϑB+

∑
αDα ϑDα)

]
(5.7)

Proof. Clearly, in the absence of the Cα ϑDα terms, this simply reduces
to (5.6). To include these terms we use expansion into Taylor series:

Eμ(eA+ϑB+
∑

α Cα ϑDα)

=
∑

n≥0

1
n!

∑

α1,...,αn

Eμ
(
(eACα1 . . . Cαn)ϑ(eBDα1 . . . Dαn)

)
(5.8)

Now we apply (5.6) to the expectation on the right-hand side and then
one more time to the resulting sum:
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Eμ(eA+ϑB+
∑

α Cα ϑDα)

≤
∑

n≥0

1
n!

∑

α1,...,αn

[
Eμ

(
(eACα1 . . . Cαn)ϑ(eACα1 . . . Cαn)

)1/2

× Eμ
(
(eBDα1 . . . Dαn)ϑ(eBDα1 . . . Dαn)

)1/2
]

≤
(∑

n≥0

1
n!

∑

α1,...,αn

Eμ
(
(eACα1 . . . Cαn)ϑ(eACα1 . . . Cαn)

))1/2

×
(∑

n≥0

1
n!

∑

α1,...,αn

Eμ
(
(eBDα1 . . . Dαn)ϑ(eBDα1 . . . Dαn)

))1/2

(5.9)
Resummation via (5.8) now yields the desired expression. ��

The argument we just saw yields a fundamental criterion for proving
reflection positivity:

Corollary 5.4. Fix a plane of reflection P and let ϑ be the correspond-
ing reflection operator. Suppose that the torus Hamiltonian takes the
form

−HL = A+ ϑA+
∑

α

Cα ϑCα (5.10)

with A,Cα ∈ A+. Then for all β ≥ 0 the torus Gibbs measure, μL,β, is
RP with respect to ϑ.

Proof. The proof is a simple modification of the argument in Lemma 5.3:
Fix f, g ∈ A+. Expansion of the exponential term in

∑
αCα ϑCα yields

EμL,β
(fϑg) =

1
ZL
E⊗μ0

(
f(ϑg) e β(A+ϑA+

∑
α Cα ϑCα)

)

=
1
ZL

∑

n≥0

1
n!

∑

α1,...,αn

E⊗μ0

(
(feβACα1 · · ·Cαn)ϑ(ge βACα1 · · ·Cαn)

)

(5.11)
The conditions of RP for μL,β are now direct consequences of the fact
that the product measure,

⊗
μ0, is itself RP (cf Lemma 5.3). ��

Now we are ready to check that all 3 interactions that we focused
our attention on in previous lectures are of the form in Lemma 5.3 and
thus lead to RP torus Gibbs measures:

Lemma 5.5. For any plane P , the n.n. (ferromagnet) interaction,
Yukawa potentials and the power-law decaying potentials, the torus
Hamiltonian can be written in the form (5.10) for some A,Cα ∈ A+.
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Proof. We focus on reflections through bonds; the case of reflections
through sites is analogous. Given P , the terms in the Hamiltonian can
naturally be decomposed into three groups: those between the sites
in T

+
L , those between the sites in T

−
L and those involving both halves

of the torus:

−HL=
1
2

∑

x,y∈T
+
L

J (L)
xy Sx · Sy

︸ ︷︷ ︸
A

+
1
2

∑

x,y∈T
−
L

J (L)
xy Sx · Sy

︸ ︷︷ ︸
ϑA

+
d∑

i=1

∑

x∈T
+
L

y∈T
−
L

J (L)
xy S

(i)
x S

(i)
y

︸ ︷︷ ︸
Ri

(5.12)

where we used the reflection symmetry of the J (L)
xy to absorb the 1/2

into the sum at the cost of confining x to T
+
L and y to T

−
L . The first

two terms identify A and ϑA; it remains to show that the Ri-term can
be written as

∑
αCα ϑCα. We proceed on a case-by-case basis:

Nearest-neighbor interactions: Here

Ri =
1
2d

∑

〈x,y〉
x∈T

+
L

y∈T
−
L

S(i)
x S

(i)
y (5.13)

which is of the desired form since Sy = ϑ(Sx) whenever x and y con-
tribute to the above sum.

Yukawa potentials : We will only prove this in d = 1; the higher
dimensions are harder but similar. Note that if P passes through the
origin and x ∈ T

+
L and y ∈ T

−
L ,

J (L)
xy = C

∑

n≥0

e−μ(|x|+|y|+nL) (5.14)

Hence,

Ri = C
∑

n≥0

e−μnL
( ∑

x∈T
+
L

e−μ|x|S(i)
x

)( ∑

y∈T
−
L

e−μ|y|S(i)
y

)
(5.15)

which is of the desired form.
Power-law potentials: Here we note

1
|x− y|s1

=
∫ ∞

0
dμμs−1e−μ|x−y|1 (5.16)

which reduces the problem to the Yukawa case. ��
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We remark that Corollary 5.3 allows a minor generalization: if a
torus measure μ is RP, and a torus Hamiltonian HL takes the form
(5.10), then also the measure e−βHLdμ is RP. This may seem to be
a useful tool for constructing RP measures; unfortunately, we do not
know any natural measures other than product measures for which RP
can be shown directly.

5.2 Gaussian Domination

Now we are in a position to start proving the infrared bound. First we
introduce its integral version known under the name Gaussian domi-
nation:

Theorem 5.6 (Gaussian Domination). Let (Jxy) be one of the three
interactions above. Fix β ≥ 0 and for h = (hx)x∈TL

∈ (Rν)TL define

ZL(h) := E⊗
μ0

(
exp

{
−β

∑

x,y∈TL

J (L)
xy |Sx − Sy + hx − hy|2

})
(5.17)

Then
ZL(h) ≤ ZL(0) (5.18)

Proof. Let HL denote the sum in the exponent. It is easy to check
that HL is of the form

−HL = A+ ϑB +
∑

α

Cα ϑDα (5.19)

Indeed, for h ≡ 0 this is simply Lemma 5.5 as the diagonal terms
can always by absorbed into the a priori measure. To get h �≡ 0 we
replace Sx by Sx + hx at each x. This changes the meaning of the
original terms A and Cα — and makes them different on the two halves
of the torus — but preserves the overall structure of the expression.

A fundamental ingredient is provided by Lemma 5.3 which yields

ZL(h)2 ≤ ZL(h+)ZL(h−) (5.20)

where h+ := h on T
+
L and h+ := ϑh on T

−
L , and similarly for h−. Now

let us show how this yields (5.18): Noting that ZL(h) → 0 whenever
any component of h tends to ±∞, the maximum of ZL(h) is achieved
at some finite h. Let h
 be a maximizer for which

N(h) := #
{
〈x, y〉 : hx �= hy

}
(5.21)
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is the smallest among all maximizers. We claim that N(h
) = 0. Indeed,
if N(h
) > 0 then there exists a plane of reflection P through bonds
such that P intersects at least one bond 〈x, y〉 with h
x �= h
y. Observe
that then

min
{
N(h
+), N(h
−)

}
< N(h
) (5.22)

Suppose without loss of generality that N(h
+) < N(h
). Then the fact
that h
 was a maximizer implies

ZL(h
)2 ≤ ZL(h
+)ZL(h
−) ≤ ZL(h
+)ZL(h
) (5.23)

which means
ZL(h
) ≤ ZL(h
+) (5.24)

i.e., h
+ is also a maximizer. But that contradicts the choice of h
 by
which N(h
) was already minimal possible. It follows that N(h
) = 0,
i.e., h
 is a constant. Since Z(h+ c) = Z(h) for any constant c, (5.18)
follows. ��

Now we can finally pay an old debt and prove the infrared bound:
Proof of Theorem 3.3. To ease the notation, we will write throughout

〈η, ζ〉 :=
∑

x∈TL

ηxζx (5.25)

to denote the natural inner product on L2(TL). First we note that for
any (ηx) ∈ (Rν)TL ,

∑

x,y∈TL

J (L)
xy |ηx − ηy|2 = 〈η,G−1

L η〉 (5.26)

where GL is as in (3.18). (Indeed, in Fourier components, Ĝ−1
L (k) =

1− Ĵ(k).) As is easy to check,

ZL(h) = E⊗
μ0

(
e−β〈S+h,G−1

L (S+h)〉)

= ZL(0)EμL,β

(
e−2β〈h,G−1

L S〉−β〈h,G−1
L h〉) (5.27)

where μL,β is the torus Gibbs measure. The statement of Gaussian
domination (5.18) is thus equivalent to

EμL,β

(
e−2β〈h,G−1

L S〉) ≤ eβ〈h,G
−1
L h〉 (5.28)

We will now use invertibility of GL to replace G−1
L h by h. This yields
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EμL,β

(
e−2β〈h,S〉) ≤ eβ〈h,GLh〉 whenever

∑

x∈TL

hx = 0 (5.29)

where the latter condition comes from the fact that G−1
L annihilates

constant functions. Next we expand both sides to quadratic order in h:

1− 2βEμL,β

(
〈h, S〉

)
+

4β2

2
EμL,β

(
〈h, S〉2

)
+ · · ·

≤ 1 + β〈h,GLh〉+ · · · (5.30)

Since EμL,β
(S) is constant, EμL,β

(〈h, S〉) = 〈h,EμL,β
(S)〉 = 0 and we

thus get

EμL,β

(
〈h, S〉2

)
≤ 1

2β
〈h,GLh〉 (5.31)

Finally, choose hx := vxêi, for some orthonormal basis vectors êi in R
ν .

This singles out the i-th components of the spins on the left-hand side
and has no noticeable effect on the right-hand side (beyond replacing
vectors hx by scalars vx). Summing the result over i = 1, . . . , ν we get
the dot product of the spins on the left and an extra factor ν on the
right-hand side. ��

5.3 Chessboard Estimates

The proof of the infrared bound was based on Lemma 5.3 which boils
down to the Cauchy-Schwarz inequality for the inner product

f, g �→ Eμ(f ϑg) (5.32)

In this section we will systematize the use of the Cauchy-Schwarz
inequality to derive bounds on correlation functions. The key
inequality — referred to as the chessboard estimate — will turn out
to be useful in the proofs of phase coexistence in specific spin systems
(even those to which the IRB technology does not apply).

Throughout we will restrict attention to reflections through planes
of sites as this is somewhat more useful in applications (except for
quantum systems). Pick two integers, B < L, such that B divides
L and L/B is even. Fixing the origin of the torus, let ΛB the block
corresponding to {0, 1, . . . , B}d — i.e., the block of side B with lower-
left corner at the origin. We may cover TL by translates of ΛB,

TL =
⋃

t∈TL/B

(ΛB +Bt) (5.33)
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noting that the neighboring translates share the vertices on the adjacent
sides. (This is the specific feature of the setup based on reflections
through planes of sites.) The translates are indexed by the sites in a
“factor torus” TL/B.

Definition 5.7. A function f : ΩTL → R is called a B-block function
if it depends only on {Sx : x ∈ ΛB}. An event A ⊂ ΩTL is called a
B-block event if 1A is a B-block function.

Given a B-block function f , and t ∈ TL/B, we define ϑtf be the
reflection of f “into” ΛB +Bt. More precisely, for a self-avoiding path
on TL/B connecting ΛB to ΛB + Bt, we may sequentially reflect f
along the planes between the successive blocks in the path. The result
is a function that depends only on {Sx : x ∈ ΛB + Bt}. Due to the
commutativity of the reflections, this function does not depend on the
choice of the path, so we denote it simply by ϑtf . Note that since
reflections are involutive, ϑ2 = id, there are only 2d distinct functions
one can obtain from f modulo translations.

Theorem 5.8 (Chessboard Estimate). Suppose μ is RP with re-
spect to all reflections between the neighboring blocks of the form ΛB +
Bt, t ∈ TL/B. Then for any B-block functions f1, . . . , fm, and any
distinct t1, . . . , tm ∈ TL/B,

Eμ

( m∏

j=1

ϑtjfj

)
≤

m∏

j=1

[
Eμ

( ∏

t∈TL/B

ϑtfj

)](B/L)d

(5.34)

Here is a version of this bound for events: If A1, . . . ,Am are B-block
events and t1, . . . , tm are distinct elements of TL/B, then

μ
( m⋂

j=1

ϑtj (Aj)
)
≤

m∏

j=1

[
μ
( ⋂

t∈TL/B

ϑt(Aj)
)](B/L)d

(5.35)

where
ϑt(A) := {ϑt1A = 1} (5.36)

Note that the exponent (B/L)d is the reciprocal volume of the torus
TL/B. (This is consistent with the fact that both expressions transform
homogeneously under the scaling fj → λjfj with λj ≥ 0.)
Proof of Theorem 5.8. We will assume throughout that Eμ(f ϑf) = 0
implies f = 0. (Otherwise, one has to factor out the ideal of such
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functions and work on the factor space.) We will first address the 1D
case; the general dimensions will be handled by induction.

Abbreviate 2n := L/B and fix a collection of non-zero functions
f1, . . . , f2n. Define a multilinear functional F on the set of B-block
functions by

F (f1, . . . , f2n) := Eμ
( 2n∏

t=1

ϑtft

)
(5.37)

Noting that F (fj , . . . , fj) > 0, we also define

G(f1, . . . , f2n) :=
F (f1, . . . , f2n)

∏2n
j=1 F (fj , . . . , fj)

1
2n

(5.38)

These objects enjoy a natural cyclic invariance,

F (f1, . . . , f2n) = F (f2n, f1, . . . , f2n−1) (5.39)

and, similarly,

G(f1, . . . , f2n) = G(f2n, f1, . . . , f2n−1) (5.40)

The definition of G also implies

G(f, . . . , f) = 1 (5.41)

Finally, Cauchy-Schwarz along the plane separating f1 from f2n and fn
from fn+1 yields

G(f1, . . . , f2n) ≤ G(f1, . . . , fn, fn, . . . , f1)
1/2

× G(f2n, . . . , fn+1, fn+1, . . . , f2n)
1/2 (5.42)

This will of course be the core estimate of the proof.
The desired claim will be proved if we show that

G(f1, . . . , f2n) ≤ 1 (5.43)

i.e., that G is maximized by 2n-tuples composed of the same function.
We will proceed similarly as in the proof of Gaussian Domination: Given
a 2n-tuple of B-block functions, (f1, . . . , f2n), let (g1, . . . , g2n) be such
that

(1) gi ∈ {f1, . . . , f2n} for each i = 1, . . . , 2n
(2) G(g1, . . . , g2n) maximizes G over all such choices of g1, . . . , g2n
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(3) g1, . . . , g2n is minimal in the sense that it contains the longest
block (counted periodically) of the form fi, fi, . . . , fi, for some i ∈
{1, . . . , 2n}.

Let k be the length of this block and, using the cyclic invariance, assume
that the block occurs at the beginning of the sequence g1, . . . , g2n, i.e.,
we have g1, . . . , gk = fi (with gk+1 �= fi unless k = 2n).

We claim that k = 2n. Indeed, in the opposite case, k < 2n, we must
have g2n �= fi whereby (5.42) combined with the fact that (g1, . . . , g2n)
is a maximizer of G imply

G(g1, . . . , g2n)2≤G(g1, . . . , gn, gn, . . . , g1)G(g2n, . . . , gn+1, gn+1, . . . , g2n)
≤ G(g1, . . . , gn, gn, . . . , g1)G(g1, . . . , g2n)

(5.44)
i.e.,

G(g1, . . . , g2n) ≤ G(g1, . . . , gn, gn, . . . , g1) (5.45)

This means that (g1, . . . , gn, gn, . . . , g1) is also a legitimate maximizer
of G but it has a longer constant block — namely of length at
least min{2k, 2n}. This is a contradiction and so we must have k = 2n
after all. In light of (5.41–5.43), this proves the claim in d = 1.

To extend the proof to d > 1, suppose that m = (L/B)d and assume,
without loss of generality, that we have one function ft for each block
ΛB +Bt. Writing

∏

t∈TL/B

ϑtft =
2n∏

j=1

( ∏

t∈TL/B

t1=j

ϑtft

)
(5.46)

we may apply the 1D chessboard estimate along the product over j.
This homogenizes the product over ft in the first coordinate direc-
tion. Proceeding through all directions we eventually obtain the desired
claim. ��

The chessboard estimate allows us to bound the probability of si-
multaneous occurrence of distinctly-placed B-block events in terms of
their disseminated versions

⋂
t∈TL/B

ϑt(A). The relevant quantities to
estimate are thus

zL(A) := μ
( ⋂

t∈TL/B

ϑt(A)
)(B/L)d

(5.47)

The set function A �→ zL(A) is not generally additive. However, what
matters for applications is that it is subadditive:
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Lemma 5.9 (Subadditivity). Let A and A1,A2, . . . , be a collection
of B-block events such that

A ⊂
⋃

k

Ak (5.48)

Then
zL(A) ≤

∑

k

zL(Ak) (5.49)

Proof. First we use the subadditivity of μ and (5.48) to get

zL(A)|TL/B | = μ
( ⋂

t∈TL/B

ϑt(A)
)

≤
(5.48)

∑

(kt)

μ
( ⋂

t∈TL/B

ϑt(Akt)
)

(5.50)

Next we apply the chessboard estimate

μ
( ⋂

t∈TL/B

ϑt(Akt)
)
≤

∏

t∈TL/B

zL(Akt) (5.51)

to each term on the right hand side. Finally we apply the distributive
law for sums and products with the result

zL(A)|TL/B | ≤
∑

(kt)

∏

t∈TL/B

zL(Akt)

=
∏

t∈TL/B

∑

k

zL(Ak) =
(∑

k

zL(Ak)
)|TL/B | (5.52)

Taking the |TL/B|-th root now yields the desired claim. ��
Here is how subadditivity zL is generally used in computations: In

order to estimate the zL-value of an event, we first cover it by the union
of a collection of smaller — and, as desired, easier to compute-with —
events, then evaluate the zL-value for each of them and, finally, add the
results.

In estimates, we often work with the limiting version,

z(A) := lim
L→∞

zL(A) (5.53)

of this quantity. We may interpret this as a partition function per site
restricted to event A on each B-block. The advantage of taking the
limit is that it often washes out some annoying finite-size factors and
thus provides a more tractable expression to work with. In addition, the
limit can be computed using arbitrary — not just periodic — boundary
conditions.
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5.4 Diagonal Reflections, Other Lattices

The above proof of the chessboard estimate is tailored to the under-
lying setting of the hypercubic lattice, primarily because of its use
of the orthogonality between the principal lattice directions. However,
some practical problems may lead us to the consideration of other lat-
tices. Some cases generalize directly, e.g., certain instances of the body-
centered cubic (BCC) or face-centered cubic (FCC) lattices, whose unit
cells look respectively as follows:

Both of these are decorations of the cubic lattice in which an extra
vertex placed in the center of each unit cube (BCC) or a face (FCC)
and is attached by edges to the vertices in its ultimate vicinity.

Assuming the interaction (2.15) with Jxy non-zero and positive only
for adjacent (i.e., nearest-neighbor) pairs of vertices, the torus Gibbs
measure is reflection positive for reflections both through and between
the planes of sites of Z

3. (A key observation is that the planes between
sites of Z

3 contain some of the added vertices but bisect no additional
edges.) The strengths of the interactions across the “old” and “new”
edges may not even be the same.

In d = 2, a corresponding graph is the lattice with a vertex placed
in the middle of each square of Z

2 and edges from it to each of the four
corners thereof. By the same reasoning, the nearest-neighbor ferromag-
netic interaction leads to a reflection positive torus Gibbs measure.

The situation becomes more involved for the triangular (two-dimen-
sional) lattice, whose standard embedding into the complex plane C has
vertices

m+ n eiπ/3, m, n ∈ Z (5.54)

and an edge between any pair of such vertices that differ by a number
in the set {1, eiπ/3, ei2π/3}. The principal problem with such graphs is
how to place a finite piece of this lattice on a torus in a way that gives
rise to reflection positive measures. Here is a convenient choice:
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with the torus obtained by identifying the vertices on the opposite sides.
The allowed planes of reflection are all horizontal lines (reflections

through sites) and the vertical lines (reflections through both sites
and bonds). Again, for ferromagnetic nearest-neighbor interactions, the
Gibbs measure with interaction (2.15) is reflection positive. A minor,
though annoying, problem occurs in the application of chessboard es-
timates because the vertical lines of reflections actually cut through
triangles. A solution is to focus only on those events that lie either
on white or on gray triangles in the above picture and use reflection
only with respect to vertical lines that do not cut through the chosen
triangles.

A completely analogous situation occurs for the honeycomb lattice.
Here we consider the domain of the form

and wrap it into a torus by identifying the vertices on the opposite side.
Again, for nearest-neighbor ferromagnetic interactions, the resulting
Gibbs measure is reflection positive with respect to reflections in verti-
cal lines on sites and horizontal lines between sites. In the application
of chessboard estimates to a collection of “hexagon events,” we only
use every other horizontal and vertical reflections to a corresponding
subset of these events; e.g., those sitting on the shaded hexagons.



56 M. Biskup

A final case of interest is that of diagonal reflections in Z
d. In d = 2,

this is achieved by wrapping the domain of the form

periodically into a torus. Reflections in the horizontal and vertical
lines of sites — the diagonals — are now symmetries of this graph;
for nearest-neighbor interactions (of any sign) the corresponding torus
Gibbs measure is reflection positive.

The advantage of the diagonal torus is that it permits the use of re-
flection positivity on collections of “bond events,” i.e., those associated
with pairs of nearest-neighbor spins. Subsequent applications of chess-
board estimates disseminate a single-bond event over the entire torus.
This, in turn, helps in estimates of the quantity z(A) whenever A is an
event depending on a single square that is itself an intersection of bond
events:

Lemma 5.10. Given a unit cube in Z
d, let Ab, with b running over all

of the cd := d2d−1 edges in this cube, be a collection of bond events.
Then

z

(⋂

b

Ab
)
≤

∏

b

z(Ab)1/cd (5.55)

Here z(Ab) is the partition function per site restricted to configurations
such that Ab, or its corresponding reflection, occurs at all edges of Z

d.

Proof. Let us first focus on d = 2. The key fact is that the partition
function per site, z(A), does not depend on what boundary conditions
were used to define it. So, in order to compute z of the intersection
event, we may first wrap the square lattice into the diagonal torus, and
disseminate the bond events before passing to the L → ∞. As there
are c2 = 4 edges in each lattice square, there is an extra power of 1/4.

In d > 2, we perform the same by singling out two lattice direc-
tions and wrapping the torus diagonally in these, and regularly in the
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remaining ones. This homogenizes the event in two lattice directions.
Proceeding by induction, the claim follows. ��

5.5 Literature Remarks

The material of this section is entirely classical; a possible exception
is Lemma 5.9 which seems to have been formulated in the present
form only relatively recently [13]. The use of reflection positivity goes
back to the days of constructive quantum field theory (namely, the
Osterwalder-Schrader axioms [84]) where RP was a tool to obtain a
sufficiently invariant — and natural — inner product. The use in sta-
tistical mechanics was initiated by the work of Fröhlich, Simon and
Spencer [50] (infrared bound) and Fröhlich and Lieb [48] (chessboard
estimates). The theory was further developed in two papers by Fröhlich,
Israel, Lieb and Simon [46, 47]. There have been a couple of nice reviews
of this material, e.g., by Shlosman [95] and in Georgii [57].

All use of reflection positivity in these notes is restricted to one of
the three interactions introduced in Chapter 3. Various generalizations
beyond these are possible. For instance, the n.n. interaction of strength
J may be accompanied by a n.n.n. interaction of strength λ— including
negative values — and the result is still RP provided J ≥ 2(d− 1)|λ|.
For reflections through planes of sites, we may even allow any sort of
interactions involving the spins in a given lattice cube. (This exhausts
all finite range interactions; any longer range RP interactions are au-
tomatically infinite range.) Many other examples are discussed, e.g.,
in [46, page 32].

Notwithstanding our decision to restrict attention only to three spe-
cific interactions, the set of reflection positive interactions is not so
small as it may appear. Indeed, in the class of translation and rotation
invariant coupling constants, letting

F (x1, . . . , xd) := J0,x (5.56)

we check that a sufficient conditions for RP is that the matrix

(x, y) �→ F (x1 + y1, x2 − y2, . . . , xd − yd)1{x1>0}1{y1>0} (5.57)

is positive semidefinite. (See (5.15) for a specific case of this.) By Shur’s
Theorem — namely that if (aij) and (bij) are positive semidefinite
matrices, then so is (aijbij) — we thus know that if J (1) and J (2) are
two collections of RP couplings, then also the collection J (1)

xy J
(2)
xy is RP.

In particular, the set of RP couplings is closed under taking products.
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The situation on other lattices is discussed in [47]; the use of diago-
nal reflections goes back to [95]. We caution the reader that it is rather
easy to make a mistake in this context. For instance, the regularly-
wrapped (L × L) torus in Z

2 is also symmetric with respect to all of
the diagonal reflections. However, for diagonal reflection on direct torus
it is not possible to define two components of the “plane of reflection”
so that the reflection in one leaves the other intact. So we cannot si-
multaneously use both direct and diagonal reflections, and this prevents
a direct proof of (5.55) in finite volume. (This error appeared in [17,
eq. 4.39] though, as shown in Lemma 5.10, all differences get washed
out in the thermodynamic limit.)

Gaussian domination appears in a rather different context as the
celebrated Brascamp-Lieb inequality. Consider the measure on R

n of
the form

μ(dx) := Z−1e−V (x)dx (5.58)

with V smooth and strictly convex. Let V ′′(x) be the Hessian, i.e., an
n × n matrix of all second derivatives of V . Then for each smooth f
with compact support,

Eμ(f2)− (Eμf)2 ≤
∫

dx
〈
(V ′′)−1∇f(x),∇f(x)

〉
(5.59)

where 〈·, ·〉 denote the n-dimensional Euclidean inner product. In par-
ticular, if Q is a positive definite n × n matrix that dominates the
Hessian from below at all x, then the correlations of μ are dominated
by those of the Gaussian measure with covariance 2Q−1. This is, un-
fortunately, not very useful in the analysis of the Gibbs measures for
general lattice spin systems as these are generally not of the required
form — e.g., because the restriction to a specific spin-space (a unit
sphere for the Heisenberg model) cannot be approximated by convex
functions.

6 Applications of Chessboard Estimates

In this section we will apply the technique of chessboard estimates to
obtain proofs of phase coexistence in some lattice spin models. The
arguments will be carried out in detail only for one rather simple ex-
ample. For more sophisticated systems we present only the important
ideas. Details, anyway, can be found in the corresponding papers.
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6.1 Gaussian Double-well Model

Here we will demonstrate the use of chessboard estimates on the model
of a Gaussian free-field model in a non-quadratic, double-well on-site
potential. The Hamiltonian takes the general form

βH(φ) := β
∑

〈x,y〉
(φx − φy)2 +

∑

x

V (φx) (6.1)

where φx ∈ R with a priori measure given by the Lebesgue mea-
sure, and V is a potential. Note that β has been incorporated into
the Hamiltonian in such a way that the on-site potential remains inde-
pendent of it.

The most well known example of such systems is V (φ) := κ
2φ

2

with κ > 0 which is known as the massive Gaussian free field. This
case can of course be treated completely explicitly; e.g., on the torus the
corresponding Gaussian measure on (φx) is zero-mean with covariance

Cov(φx, φy) =
∑

k∈T
�
L

eik·(x−y)

βD̂(k) + κ
(6.2)

where D̂(k) is the Fourier transform of the torus (discrete) Laplacian,

D̂(k) :=
d∑

j=1

|1− eikj |2 (6.3)

Note that the inclusion of the mass, κ > 0 — more precisely, κ is the
mass squared — makes the covariance regular even for the zero mode
k = 0.

We will look at a modification of this case when V takes the form

V(φ)

φ



60 M. Biskup

In fact, we will be even more specific and assume that V is simply
given by

e−V (φ) := e−
κ
2
(φ−1)2 + e−

κ
2
(φ+1)2 (6.4)

It is easy to check that, for κ sufficiently large, V defined using this
formula looks as in the figure. The reason for assuming (6.4) is the pos-
sibility of an Ising-spin representation. Indeed, we may rewrite (6.4) as

e−V (φ) =
∑

σ=±1

e−
κ
2
(φ−σ)2 = C

∑

σ=±1

e−
κ
2
φx−κφxσx (6.5)

where C := e−κ. A product of such terms is thus proportional to
∏

x

e−V (φx) ∝
∑

(σx)

∏

x

e−
κ
2
φ2

x−κφxσx (6.6)

This means we can write the Gibbs weight of the model as follows

e−β
∑

〈x,y〉(φx−φy)2−
∑

x V (φx)

∝
∑

(σx)

e−β
∑

〈x,y〉(φx−φy)2−κ
2

∑
x φ

2
x e−κ

∑
x φxσx (6.7)

If we elevate (σx) to genuine degrees of freedom, we get a model on
spins Sx := (φx, σx) with a priori law Lebesgue on R× counting mea-
sure on {−1, 1} and the Hamiltonian

βH(φ, σ) := β
∑

〈x,y〉
(φx − φy)2 +

κ

2

∑

x

φ2
x + κ

∑

x

φxσx (6.8)

Notice the first two terms on the right-hand side is the Hamiltonian of
the massive (centered) Gaussian free field while the interaction between
the φ’s and the σ’s has on-site form.

Here are some observations whose (simple) proof we leave to the
reader:

Lemma 6.1. Let μ be a Gibbs measure for Hamiltonian (6.8) and let ν
be its φ-marginal. Then ν is a Gibbs measure for the Hamiltonian (6.1)
subject to (6.4). The marginal ν completely determines μ: For any f
depending only on φ and σ in a finite set Λ,

Eμ(f) = Eν
( ∑

(σx)x∈Λ

f(φ, σ)
∏

x∈Λ
eV (φx)−κ

2
(φx−σx)2

)
(6.9)
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We will use Gβ,κ to denote the set of all Gibbs measures for the
Hamiltonian (6.8) with parameters β and κ. The principal result for
this model is as follows:

Theorem 6.2. Let d ≥ 2. For each ε > 0 there is c > 0 such that
if κ, κ/β > c, then there exist μ+, μ− ∈ Gβ,κ which are translation in-
variant and obey

μ±(σx = ±1) ≥ 1− ε (6.10)

and
Eμ±

(
(φx ∓ 1)2

)
≤ ε (6.11)

In simple terms, at low temperatures and large curvature of the wells
of V , the fields prefer to localize in one of the wells. We remark that,
while we chose the model as simple as possible, a similar conclusion
would follow for V given by

e−V (φ) = e−
κ+
2

(φ−1)2+h + e−
κ−
2

(φ+1)2−h. (6.12)

where h changes the relative weight of the two minima. Indeed, there
exists ht at which one has two Gibbs measure — the analogues of μ+

and μ−. Moreover, if κ+ � κ−, then ht > 0 because, roughly speaking,
the well at −1 offers “more room” for fluctuations.

6.2 Proof of Phase Coexistence

Here we will prove Theorem 6.2. We will focus on d = 2; the proof in
general dimension is a straightforward, albeit more involved, general-
ization.

Let us refer to a face of Z
2 as a plaquette (i.e., a plaquette is a

square of side one with a vertex of Z
2 in each corner). Given a spin

configuration (σx), we say that a plaquette is good if all four spins take
the same value, and bad otherwise. Let B denote the event that the
plaquette with lower-left corner at the origin is bad.

Since the interaction is that of the GFF with a modified single-spin
measure, the torus Gibbs measure is RP. The crux of the proof is to
show that bad plaquettes are suppressed. Specifically, we want to show
that

z(B) � 1 once β, κ� 1 (6.13)

Appealing to the subadditivity lemma (Lemma 5.9) we only need to
estimate the z-value of all possible configurations on the plaquette that
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constitute B. Due to the plus-minus symmetry of the σ’s, it suffices to
examine three patterns:

+
−
−
+

+
+
−
−

+
−

+
+

(6.14)

We begin with the most interesting of the three:

Lemma 6.3. For any β, κ > 0,

z
(
+
−
−
+
)
≤ e−

4βκ
8β+κ (6.15)

Proof. Let ZL :=
∑
σ

∫
e−βHL(φ,σ)

∏
x∈TL

dφx be the torus partition
function. Given a plaquette spin pattern, let ZL(pattern) denote the
same object with σ fixed to the disseminated pattern — the sole element
of

⋂
t∈TL

ϑt(pattern). (We are working with B = 1.) By the definition
of z we have

zL
(
+
−
−
+
)|TL| :=

ZL
(
+
−
−
+
)

ZL
≤
ZL

(
+
−
−
+
)

ZL
(
+
+

+
+
) (6.16)

Now the partition function with all σ’s restricted to + is given by

ZL
(
+
+

+
+
)

=
∫

e−β
∑

〈x,y〉(φx−φy)2−κ
2

∑
x φ

2
x e−κ

∑
x φx

∏

x∈TL

dφx

=
(
. . .

)
EGFF

(
e−κ

∑
x φx

)
(6.17)

where the expectation is with respect to the massive Gaussian free
field and the prefactor denotes the integral of the Gaussian kernel over
all φx. Similarly we obtain

ZL
(
+
−
−
+
)

=
(
. . .

)
EGFF

(
e−κ

∑
x φx(−1)|x|) (6.18)

where we noticed that by disseminating the pattern +
−
−
+ we obtain a

configuration which is one at even parity x and minus on at odd par-
ity x. Thus we conclude

zL
(
+
−
−
+
)|TL| ≤

EGFF

(
e−κ

∑
x φx

)

EGFF

(
e−κ

∑
x φx(−1)|x|

) (6.19)

i.e., we only need to compute the ratio of the Gaussian expectations,
and not the prefactors.

Next we recall a standard formula for Gaussian moment generating
functions: If X is a multivariate Gaussian, then
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E(eλ·X) = eλ·EX+ 1
2
Var(λ·X) (6.20)

Since EGFF(φx) = 0, we only need to compute the (diagonal) ma-
trix element of Cov(φx, φy) against vectors 1 = (1, 1, . . . ) and (−1)|x|.
However, a quick look at (6.2) will convince us that these functions
are eigenvectors of the covariance matrix corresponding to k = 0 and
k = (π, π), respectively. Since D̂(0) = 0 while D̂(π, π) = 8, we get

VarGFF

(∑

x

φx

)
=
|TL|
κ

(6.21)

VarGFF

(∑

x

φx(−1)|x|
)

=
|TL|

8β + κ
(6.22)

where the factor |TL| is the (square of) the L2(TL)-norm of the func-
tions under consideration. Plugging this in (6.19) we conclude

zL
(
+
−
−
+
)|TL| ≤ exp

{
1
2
|TL|κ2

( 1
8β + κ

− 1
κ

)}
(6.23)

from which the claim readily follows. ��
Next we attend to the other patterns:

Lemma 6.4. For any β, κ > 0,

z
(
+
+
−
−) ≤ e−

2βκ
4β+κ (6.24)

and
z
(
+
−

+
+
)
≤ e−

2βκ
8β+κ (6.25)

Proof. As for (6.24), dissemination of +
+
−
− leads to alternating stripes

of plusses and minuses, i.e., σx = (−1)|x1|. Again, this is an eigenvector
of the covariance matrix (6.2) with k = (π, 0). The corresponding D̂
equals 4 and so

zL
(
+
+
−
−)|TL| ≤ exp

{
1
2
|TL|κ2

( 1
4β + κ

− 1
κ

)}
(6.26)

yielding (6.24).
The pattern +

−
+
+ is more complex because its dissemination will not

lead to an eigenvector of the covariance matrix. However, we circumvent
this problem by noting that Lemma 5.10 implies

z
(
+
−

+
+
)
≤ z

(
+
−
−
+
)1/2z

(
+
+

+
+
)1/2 ≤ z

(
+
−
−
+
)1/2 (6.27)

where we used z
(
+
+

+
+
)
≤ 1. Now (6.25) follows from Lemma 6.3. ��
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Corollary 6.5. For each ε > 0 there exists a > 0 such that if β, κ > a,
then z(B) ≤ ε.

Proof. The event B can be written as the union over a finite number
of bad patterns. On the basis of Lemmas 6.3–6.4 the claim holds for B
replaced by any fixed bad pattern. The desired bound now follows —
with slightly worse constants — by invoking Lemma 5.9. ��

Next we explain our focus on the bad event:

Lemma 6.6. There exists a constant c ∈ (1,∞) such that if cz(B) < 1/2

then for any x, y ∈ TL,

μL(σx = 1, σy = −1) ≤ 2cz(B). (6.28)

Proof. This is a consequence of a simple Peierls’ estimate. Indeed, if
σx = 1 and σy = −1, then x is separated from y by a “circuit” of
bad plaquettes. (Formally, either all plaquettes containing x are bad
or there exists a non-trivial connected component of good — i.e., not
bad — plaquettes containing x. This component cannot cover the whole
torus because σy = −1; the above “circuit” is then comprised of the
bad plaquettes on the boundary of this component.) This means that

μL(σx = 1, σy = −1) ≤
∑

γ

μL

( ⋂

t∈γ
ϑt(B)

)
≤

∑

γ

z(B)|γ| (6.29)

where |γ| denotes the maximal number of disjoint bad plaquettes in γ
and where we used the chessboard estimates to derive the second
bound. By standard arguments, the number of circuits of “length” n
surrounding x or winding around TL at least once is bounded by cn,
for some constant c > 1. It follows

μL(σx = 1, σy = −1) ≤
∑

n≥1

cnz(B)n (6.30)

Under the condition cz(B) < 1/2 this sum is less than twice its first
term. ��

Finally, we can assemble the ingredients into the desired proof of
phase coexistence:
Proof of Theorem 6.2. By symmetry of the torus measure, we have

μL(σx = 1) = 1/2 = μL(σx = −1). (6.31)

Let z be a site at the back of the torus — that is distant at least L/2
from the origin — and define
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μ±L (−) := μL(−|σz = ±1). (6.32)

These measures satisfy the DLR condition with respect to any func-
tion that depends only on the “front” of the torus and so any weak
cluster point of these measures will be an infinite-volume Gibbs mea-
sure. Extract such measures by subsequential limits and call them μ+

and μ−, respectively.
We claim that μ+ �= μ−. Indeed, by Lemma 6.6 we have

μ+
L (σx = −1) ≤ 2cz(B) (6.33)

once z(B) � 1 and, by Corollary 6.5, this actually happens once
β, κ� 1. Thus if, say, 2cz(B) ≤ 1/4, then μ+

L (σx = −1) ≤ 1/4 and,
at the same time, μ−L (σx = +1) ≤ 1/4. The same holds for the limiting
objects and so μ+ �= μ−. Note that the measures can be averaged over
shifts so that they become translation invariant. ��

Notice that in the last step of the proof we used, rather conve-
niently, the plus-minus symmetry of the torus measure. In the asym-
metric cases, e.g., (6.12), one can either invoke a continuity argument —
choose h = hL such that (6.31) holds — or turn (6.28) into the proof
that |TL|−1

∑
x∈TL

σx will take values in [−1,−1 + ε] ∪ [1− ε, 1] with
probability tending to one as L→∞. The latter “forbidden-gap” argu-
ment is rather robust and extends, with appropriate modifications, to
all shift-ergodic infinite-volume Gibbs measures. Hence, the empirical
magnetization in ergodic measures cannot change continuously with h.

To prove Theorem 6.2, it remains to show the concentration of
the φ’s around the σ’s:
Proof of (6.11). Let μ be a Gibbs measure for parameters β and κ.
Then (6.8) shows that, conditional on the σ’s, the φ’s are Gaussian
with mean

Eμ(φx|σ) = κ
(
(2βΔ+ κ)−1σ

)
x

(6.34)

and covariance (2βΔ + κ)−1, where Δ is the lattice Laplacian. Now,
once β/κ � 1 we may expand the inverse operator into a power series
to get

Eμ(φx|σ)− σx =
∑

n≥1

(2β
κ

)n
(Δnσ)x (6.35)

which by the fact that |σz| = 1 is O(β/κ) independently of x. Since the
conditional variance of φx is O(1/κ), we obtain

Eμ
(
(φx − σx)2

∣∣σ
)
≤ 2Eμ

(
[φx − E(φx|σ)]2

∣∣σ
)

+ 2
(
E(φx|σ)− σx

)2

= O
(
(β/κ)2

)
+O(1/κ)

(6.36)
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with the constants implicit in the O’s independent of the σ’s and x.
Thus, if κ� 1 and κ/β � 1, then (6.11) follows by the fact that μ± put
most of the mass on σx = ±1. ��

6.3 Gradient Fields with Non-convex Potential

Having demonstrated the use of chessboard estimates on a toy model,
we will proceed to discuss more complicated systems. We begin with an
example which is somewhat similar to the Gaussian double-well model.

A natural generalization of the massless GFF is obtained by re-
placing the quadratic gradient interaction by a general, even function
of the gradients. The relevant Hamiltonian (again with temperature
incorporated in it) is

βH(φ) :=
∑

〈x,y〉
V (φx − φy) (6.37)

The requirements that we generally put on V are continuity, evenness
and quadratic growth at infinity. Under these conditions one can always
define finite-volume Gibbs measures.

As to the measures in infinite volume, the massless nature of the
model may prevent existence of a meaningful thermodynamic limit in
low dimensions; however, if one restricts attention to gradient variables,

ηb := φy − φx if b is the oriented edge (x, y), (6.38)

then the infinite-volume Gibbs measures exist, and may be character-
ized by a DLR condition, in all d ≥ 1. We call these gradient Gibbs
measures (GGM). A non-trivial feature of the GGM is that they obey
a host of constraints. Indeed, almost every η is such that

ηb1 + ηb2 + ηb3 + ηb4 = 0 (6.39)

for any plaquette (b1, . . . , b4) with bonds listed (and oriented) in the
counterclockwise direction.

Surprisingly, the classification of all possible translation-invariant,
infinite-volume GGMs can be achieved under the condition that V is
strictly convex:

Theorem 6.7. Suppose V is convex, twice continuously differentiable
with V ′′ bounded away from zero and infinity. Then the shift-ergodic
GGMs μ are in one-to-one correspondence with their tilt, which is a
vector a ∈ R

d such that



Phase Transitions in Lattice Models 67

Eμ(ηb) = a · b (6.40)

for every (oriented) bond b (we regard b as a unit vector for this pur-
pose).

The word tilt comes from the interpretation of a as the slope or
the incline of the interface whose height-gradient along bond b is given
by ηb. The proof of this result — which is due to Funaki and Spohn —
is based on the use of the Brascamp-Lieb inequality through which the
convexity assumption enters in an essential way. It is also known that
the large-scale fluctuation structure of the η’s is that of a Gaussian Free
Field.

A natural question to ask is what happens when V is not convex.
Specific examples of interest might be V taking the form of a double-
well potential — kind of like for the Gaussian double-well model — or
V ’s as in the figure:

V(η) V(η)

η

a

η

b

As it turns out, the double-well case is not quite tractable at the mo-
ment — and most likely behaves like a massless GFF on large scales —
but the other two cases are within reach. We will focus on the case (a)
and, as for the Gaussian double-well model, assume a particular form
of the potential:

e−V (η) := p e−κOη2/2 + (1− p) e−κDη2/2 (6.41)

where κO and κD are positive numbers and p ∈ [0, 1] is a parameter to
be varied. For this system one can prove the following result:

Theorem 6.8. Suppose d = 2 and κO � κD. Then there is pt ∈ (0, 1)
and, for V with p = pt, there are two distinct, infinite-volume, shift-
ergodic GGMs μord and μdis that are invariant with respect to lattice
rotations and have the following properties:

(1) zero tilt:
1
|ΛL|

∑

b=(x,y)
x,y∈ΛL

ηb −→
L→∞

0, μord, μdis-a.s. (6.42)
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(2) distinct fluctuation size:

Eμord
(η2
b ) � Eμdis

(η2
b ) (6.43)

The upshot of this result is that, once the convexity of V is strongly
violated, the conclusions of Theorem 6.7 do not apply. While the ex-
ample is restricted to d = 2, and to potentials of the form (6.41),
generalizations to d ≥ 2 and other potentials as in the above figure are
possible and reasonably straightforward.

Here are the main steps of the proof. First, as for the Gaussian
double-well model, we use (6.41) to expand the Gibbs weight according
to whether the first or the second term in (6.41) applies. This gives rise
to a configuration of coupling strengths (κb), one for each bond b, which
take values in {κO, κD}. The joint Hamiltonian of the η′s and the κ’s is

βH(η, κ) :=
∑

b

κb
2
η2
b (6.44)

The joint measure is RP with respect to reflections through bonds and
sites and, conditional on (κb), the η’s are Gaussian.

For the proof of phase coexistence, we focus on lattice plaquettes
and divide these into good and bad according to whether all of the
edges have the same coupling κ or not. The dissemination of each bad
patterns leads to a Gaussian integral but this time for GFF with inho-
mogeneous — yet periodically varying — couplings. For instance, the
pattern with three bonds of type κO and one of type κD disseminates
into periodic configuration where the edges on every other vertical line
is of type κD and all other edges are of type κO. Similarly for all other
bad patterns.

The periodic nature of the disseminated events allows the use of
Fourier modes — i.e., pass to the reciprocal torus — to diagonalize the
requisite covariance matrices. For instance, the aforementioned pattern
with three κO’s and one κD leads to a configuration which is periodic
with period two. A calculation shows that the covariance is block di-
agonal with 2× 2 blocks of the form

Π(k) :=

(
κO|a−|2 + 1

2(κO + κD)|b−|2 1
2(κO − κD)|b−|2

1
2(κO − κD)|b−|2 κO|a+|2 + 1

2(κO + κD)|b−|2

)

(6.45)
where a± and b± are defined by

a± = 1± eik1 and b± = 1± eik2 (6.46)
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with k := (k1, k2) varying through one half of the reciprocal torus T
∗
L.

(The block combines the contribution of both k and k+πê1, and so we
only need half of all k’s.) The requisite Gaussian integral then reduces
to

∏
k∈T

∗
L\{0}

[detΠ(k)]−1/4 where in the exponent we get 1/4 instead of
the expected 1/2 to account for double counting of the k’s. To estimate
the growth rate of this product, we note that

∏

k∈T
∗
L\{0}

[detΠ(k)]−1/4

= exp
{
−|TL|

1
4

∫
dk

(2π)2
log detΠ(k) + o(|TL|)

}
(6.47)

The integral plays the role of the free energy associated with the Gaus-
sian variables on the background of the specific periodic configuration
of the κ’s. A similar expression — with different integrand — applies
to each pattern.

Comparing the integrals for all possible arrangements of the two
types of bonds around a plaquette, we find that under the condition
κO � κD, the bad patterns are heavily suppressed. Thus bad plaquettes
are infrequent and can be regarded as parts of a contour. As it is not
possible to pass from all-κO pattern to all-κD pattern without cross-
ing a bad plaquette, the coexistence follows — as for the double-well
model — by a standard Peierls’ argument and chessboard estimates.
Full details of the proof are to be found in a paper by Kotecký and the
present author.

The two-dimensional model has the special feature that we can ac-
tually compute pt:

Theorem 6.9. Let d = 2. If κO/κD � 1, then pt is given by

pt
1− pt

=
(κD

κO

)1/4

. (6.48)

This is a consequence of a duality relation that can be used to
exchange the roles of κO and κD. It is also interesting to note that, while
the one-to-one correspondence between the Gibbs measures and their
tilt is violated for non-convex potentials, the large-scale fluctuation
structure remains that of a Gaussian Free Field. Indeed, we have:

Theorem 6.10. Let d = 2. For each translation-invariant, ergodic gra-
dient Gibbs measure μ with zero tilt, there exists a positive-definite d×d
matrix q = q(μ) such that for any smooth f : R

2 → R with compact sup-
port and

∫
f(x)dx = 0,
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∫

dxφ�x/ε�f(x)
D−→
ε↓0

N
(
0, (f,Q−1f)

)
(6.49)

where N (0, C) denotes a normal random variable with mean zero and
covariance C and Q is the elliptic operator

Qf(x) :=
d∑

i,j=1

qij
∂2

∂xi∂xj
f(x) (6.50)

The basis of this result — derived in all d ≥ 1 by Spohn and the
present author — is the fact that, conditional on the κ’s, the φ’s are
Gaussian with mean zero and covariance given by the inverse of the
generator of a reversible random walk in random environment. The
Gaussian limit is a consequence of an (annealed) invariance principle
for such random walks and some basic arguments in homogenization
theory. The restriction to zero tilt appears crucially in the proof.

6.4 Spin-waves vs Infinite Ground-state Degeneracy

Next we will discuss a couple of spin models whose distinctive feature
is a high degeneracy of their ground state which is removed, at pos-
itive temperature, by soft-mode spin-wave fluctuations. The simplest
example with such property is as follows:

Orbital compass model : Here the spins on Z
d take values in a unit sphere

in R
d, i.e., Sx ∈ S

d−1 with x ∈ Z
d. The Hamiltonian is

H(S) :=
∑

x

d∑

α=1

(S(α)
x − S(α)

x+êα
)2 (6.51)

where S(α)
x denotes the α-th Cartesian component of the spin and êα

is the unit vector in the α-th coordinate direction.
Despite a formal similarity with the Heisenberg model, note that

only one component of the spin is coupled in each lattice direction.
Notwithstanding, every constant configuration is still a minimum-
energy state of (6.51). Further ground states may be obtained from
the constant ones by picking a coordinate direction α and changing the
sign of the α-th component of all spins in some of the “lines” paral-
lel with êα. In d = 2 these are all ground states but in d ≥ 3 other
operations are possible that preserve the minimum-energy property.

The key question is now what happens with this huge ground-state
degeneracy at positive temperatures. Here is a theorem one can prove
about the two-dimensional system:
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Theorem 6.11. For each ε > 0 there exist β0 > 0 and, for each β ≥ β0,
there exist two distinct, shift-ergodic Gibbs measures μ1, μ2 ∈ Gβ such
that

Eμj

(
|Sx · êj |

)
≥ 1− ε, j = 1, 2 (6.52)

Moreover, for any μ ∈ Gβ we have

Eμ(Sx) = 0 (6.53)

and there are no shift-ergodic μ ∈ Gβ, β ≥ β0, for which we would have
maxj=1,2Eμ

(
|Sx · êj |

)
< 1− ε.

The main idea underlying the proof is the evaluation of the free
energy associated with spin-wave perturbations of the constant ground
states; it this expected that only the states with the largest contribution
of these fluctuations survive at positive temperatures. Specifically, we
need to quantify the growth rate of the torus partition function with
all spins constrained to lie within Δ of a given direction:

Lemma 6.12. For each ε > 0 there is δ > 0 such that if β,Δ obey

βΔ2 >
1
δ

and βΔ3 < δ (6.54)

then for every v̂θ := (cos θ, sin θ) ∈ S
1,

E⊗μ0

(
e−βHL(S)

∏

x∈TL

1{|Sx−v̂θ|<Δ}
)

=
(2π
β

)L2/2
e−L

2[F (θ)+o(ε)] (6.55)

where

F (θ) :=
1
2

∫
dk

(2π)2
log

{
sin2(θ)|1− eik1 |2 + cos2(θ)|1− eik2 |2

}
(6.56)

The quantity F has the interpretation of the spin-wave free en-
ergy where the term “spin wave” refers to slowly varying deformations
of a constant ground states. A convexity argument — based on the
identity sin2(θ) + cos2(θ) = 1 — now shows that F is minimized by
θ = 0, π/2, π, 3π/2, i.e., exactly in one of the coordinate directions. This
corroborates the intuition that only the configurations with most of the
spins aligned in one of these directions will be relevant at low temper-
atures. However, to extract a proof of phase coexistence, we will have
to again invoke a Peierls’ argument.
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Fix κ > 0 and let Δ := β−
5
12 and B := log β and let BE and BSW

denote the following events:

(1) BE := { a pair of neighboring spins in ΛB differ by an angle ≥ Δ}
(2) BSW is the set of configurations in the complement of BE in which

the block ΛB has all neighboring spins within Δ of each other
with at least κ� Δ from one of the four coordinate directions

The event BE captures the situations when two neighboring spins are
not quite close to each other leading to excess energy order Δ2. As a
result of that,

z(BE) ≤ 3B3e−c3βΔ
2

(6.57)

The event BSW collects the configurations where the energy is good
but the fluctuations are not sufficiently powerful. The calculation in
Lemma 6.12 and a simple use of the subadditivity lemma show

z(BSW) ≤ c1
Δ

e−c2B
3κ2

(6.58)

for some constants c1, c2 > 0. Thus, for our choices of Δ and B,
once β � 1 the density of blocks where BE∪BSW occurs in any typical
configuration from the torus measure will be rather small. However, if a
block is aligned in one coordinate direction and another block is aligned
in a different direction, they must be separated by a “circuit” of bad
blocks. Such circuits are improbable which leads to phase separation.
Details of these calculations — which extend even to quantum setting
— can be found in a paper by Chayes, Starr and the present author.

120-degree model : A somewhat more complicated version of the inter-
action, but with the spins Sx taking values in the unit circle S

1, can
be contrived in d = 3. The Hamiltonian will actually look just as for
the orbital compass model except that S(α)

x are not Cartesian compo-
nents but projections on the three third-roots of unity b̂1, b̂2, b̂3 in S

1.
Explicitly,

H(S) :=
∑

x

∑

α=1,2,3

(
Sx · b̂α − Sx+êα · b̂α

)2 (6.59)

Again, all constant configurations are ground states and further ground
states may again be obtained by judicious reflections. Fortunately, the
number of energy-preserving operations one can perform on ground
states is much smaller than for the orbital compass model, and all
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ground states can thus be classified. Namely, given a ground state con-
figuration, every unit cube in Z

3 looks as one of the four cubes in the
picture

modulo, of course, a simultaneous rotation of all spins. Here is what
we can we say rigorously about this model:

Theorem 6.13. Let ŵ1, . . . , ŵ6 ∈ S
1 be the six sixth roots of unity.

For each ε > 0 there exist β0 > 0 and, for each β ≥ β0, there exist six
distinct, shift-ergodic Gibbs measures μ1, . . . , μ6 ∈ Gβ such that

Eμj

(
Sx · ŵj

)
≥ 1− ε, j = 1, . . . , 6 (6.60)

There are no shift-ergodic μ ∈ Gβ, β ≥ β0, for which we would have
maxj=1,...,6Eμ

(
Sx · ŵj

)
< 1− ε.

The ideas underlying this theorem are quite similar to the orbital
compass model. First we find out that the spin-wave free energy for
fluctuations about the ground state pointing in direction θ is given by

F (θ) :=
1
2

∫
dk

(2π)3

[
log

∑

α=1,2,3

qα(θ)|1− eikα |2
]

(6.61)

where q1 := sin2(θ), q2 := sin2(θ − 120◦) and q3 := sin2(θ + 120◦). A
surprisingly sophisticated argument is then required to show that F
is minimal only for θ of the form π

3 j, j = 1, . . . , 6. Once we have this
information, the rest of the argument follows a route very similar to
that for the orbital compass model (including the introduction of the
scales κ and Δ and the corresponding events BE and BSW). Details
appeared in a paper by Chayes, Nussinov and the present author.

n.n. and n.n.n. antiferromagnet : Finally, we will consider a toy model
that exemplifies the features of both systems above. Here d = 2 and the
spins take again values in S

1, but the interaction is antiferromagnetic —
that is, with a preference for antialignment — for both nearest and
next-nearest neighbors:
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H(S) := γ
∑

x

[
Sx ·Sx+ê1 +Sx ·Sx+ê2

]
+
∑

x

[
Sx ·Sx+ê1+ê2 +Sx ·Sx+ê1−ê2

]

(6.62)

Assuming |γ| < 2, the minimum energy state is obtained by first en-
forcing the n.n.n. constraints — there is an antiferromagnetic, or Neél,
order on both even and odd sublattice — and only then worrying about
how to satiate the n.n. constraint. But once the sublattices are or-
dered antiferromagnetically, the net interaction between the sublattices
is zero — and so each of the sublattices can be rotated independently!
Here is a configuration of this form:

For this system we can nevertheless prove the following theorem:

Theorem 6.14. For each ε > 0 there exist β0 > 0 and, for each β ≥ β0,
there exist two distinct, shift-ergodic Gibbs measures μ1, μ2 ∈ Gβ such
that

−Eμj

(
Sx · Sx+ê1±ê2

)
≥ 1− ε (6.63)

and
Eμj

(
Sx · Sx+êj

)
≥ 1− ε, j = 1, 2 (6.64)

There are no shift-ergodic μ ∈ Gβ, β ≥ β0, for which either (6.63) or
at least one of (6.64) does not hold.
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As for the two models above, everything boils down to a spin-wave
calculation. Here the relevant parameter is the relative orientation θ of
the two antiferromagnetically ordered sublattices. The spin-wave free
energy is then

F (θ) :=
1
2

∫

[−π,π]2

dk

(2π)2
logDk(θ) (6.65)

where

Dk(θ) := |1− ei(k1+k2)|2 + |1− ei(k1−k2)|2

+ γ cos(θ)
(
|1− eik1 |2 − |1− eik1 |2

)
(6.66)

As D(θ) = αD(0) + (1 − α)D(π), with α := 1
2(1 + cos(θ)), Jensen’s

inequality for the logarithm directly shows that F is minimized by
θ = 0 or θ = π. In spin configurations, the former corresponds to
horizontal alignment and vertical antialignment of nearest neighbors,
and the latter to horizontal antialignment and vertical alignment, i.e.,
stripe states. Details of all calculations appeared in a paper by Chayes,
Kivelson and the present author.

Notice that, despite the fact that the lattices maintain a specific
relative orientation at low temperatures, a Mermin-Wagner argument
ensures that every Gibbs measure is invariant under a rigid rotation of
all spins.

6.5 Literature Remarks

The Gaussian double-well model is a standard example which can be
treated either by methods of reflection positivity, or by Pirogov-Sinai
theory [35]. Representations of the kind (6.4) have been used already
before, e.g., by Külske [74, 75] and Zahradńık [107]. The method of
proof presented here draws on the work of Dobrushin, Kotecký and
Shlosman [33, 71, 69] which was used to control order-disorder tran-
sitions in a number of systems; most notably, the q-state Potts model
with q � 1 [69]. These methods may be combined with graphical rep-
resentations of Edwards-Sokal [39] (or Fortuin-Kasteleyn [43]) to es-
tablish rather complicated phase diagrams, e.g., [26, 12]. Recently, the
method has been used to resolve a controversy about a transition can
occur in 2D non-linear vector models [41, 42].

Theorem 6.7 has been proved by Funaki and Spohn [53]. As already
mentioned, their proof is based on convexity properties of the poten-
tial V — by invoking the Brascamp-Lieb inequality as well as certain
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coupling argument to the natural dynamical version of the model —
and so it does not extend beyond the convex case. (A review of the
gradient measures, and further intriguing results, can be found in Fu-
naki [52], Velenik [104] or Sheffield [92].) Theorem 6.8 was proved by
Biskup and Kotecký [17]; Theorem 6.10 was derived by Biskup and
Spohn [18].

The interest in models in Sect. 6.4 came from a physics controversy
about whether orbital ordering in transition-metal oxides exists at low
temperatures. On the basis of rigorous work by Biskup, Chayes and
Nussinov [13] (120-degree model) Biskup, Chayes, Nussinov and Starr
[15, 14] (2D and 3D orbital compass model), it was demonstrated that,
at least at the level of classical models, spin-wave fluctuations stabilize
certain ground states [83]. The conclusions hold also the 2D quantum
orbital-compass model with large quantum spins [15]. The mechanism
of entropic stabilization — or, in physics jargon, order by disorder — is
most clearly demonstrated in the n.n. & n.n.n. antiferromagnet studied
by Biskup, Chayes and Kivelson [11]. This model actually goes back to
the papers by Shender [93] and Henley [63] which first spelled out the
original order-by-disorder physics arguments.

All three “phase coexistance” theorems in Sect. 6.4 have, apart
from an existence clause, also a clause on the absence of ergodic states
whose local properties deviate from those whose existence was asserted.
Actually, these were not the content of the original work [13, 11] be-
cause, at that time, the focus on torus measures dictated by reflection
positivity was deemed to make it impossible to rule out the occurrence
of some exotic measures. A passage to such statements was opened
by the work of Biskup and Kotecký [16]; the non-existence clauses in
Theorems 6.11, 6.13 and 6.14 are direct consequences of the main result
of [16] and the method of proof of the existence part. This technique
does not quite apply in the setting of gradient models due to the strong
role the boundary conditions play in this case.

7 Topics Not Covered

There are naturally many interesting topics dealing with reflection pos-
itivity that have not been covered by these notes. Here we will attempt
to at least provide a few relevant comments and give pointers to the
literature where an interested reader may explore the subject to the
desired level of detail.

The first (and large) area which was neglected is that of quantum
models. Here one faces the principal difficulty that the spin variables
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are replaced by operators which, generally, do not commute with one
another. Nevertheless, reflection positivity can be proved for reflections
through planes between sites under the condition that the Hamiltonian
is of the form (5.10). (For reflections through planes of sites the non-
commutativity of involved objects makes the above technology largely
unavailable.) Thus, chessboard estimates and, by a passage via the
Duhamel two-point function, also infrared bound can again be estab-
lished. This and the resulting applications to proofs of phase transitions
in, e.g., the quantum Heisenberg anti ferromagnet and XY-model con-
stitute the papers of Dyson, Lieb and Simon [38] and Fröhlich and
Lieb [48]. A pedagogical account of these can be found in the notes by
Tóth [103].

Unlike for the classical models, in the quantum setting reflection
positivity appears to be a somewhat peculiar condition. Generally,
it requires that the involved operators can be represented by either
real or purely imaginary matrices. This is where the technique fails
in the case of the quantum Heisenberg ferromagnet (Speer [99], but
see also Kennedy [67] and Conlon and Solovej [27]). Notwithstanding,
the technique continued to be applied in the quantum world to derive
useful conclusions; e.g., to study long range order in two-dimensional
antiferromagnets (Kennedy, Lieb and Shastry [68]), to resolve the so
called flux phase problem in the Hubbard model (Lieb [78], see also
Macris and Nachtergaele [81]) or to prove uniqueness of the ground
state in the half-filled band therein (Lieb [77]). The latter work invokes
spin-reflection positivity ; a new idea later further exploited by, e.g.,
Tian [102] and Tasaki [101]. Other applications of reflection positivity
in itinerant-electron models appear in, e.g., Macris [79] and Macris and
Lebowitz [80].

As already mentioned, one can use RP to develop a rigorous link be-
tween the phase transitions in quantum and classical systems (Biskup,
Chayes and Starr [15]). Here the main idea is the conversion of the
quantum chessboard estimate to the classical one by means of an ex-
tension of Berezin-Lieb inequalitites to matrix elements in the basis of
coherent states.

Another topic not sufficiently represented in these notes is that of
dimer or other combinatorial models. Here we wish to mention, e.g.,
the conclusions concerning the six-vertex model and hard-core lattice
gasses (Fröhlich, Israel, Lieb and Simon [47]) or the liquid-crystal mod-
els based on interacting dimers (Heilmann and Lieb [62] and Abraham
and Heilmann [1]). There is also a novel application to characterization
of graph homomorphisms (Freedman, Lovász and Schrijver [44]).
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The origin of reflection positivity lies within the field theory as part
of the Osterwalder-Schrader axioms. A reader interested in this direc-
tion should employ the relevant search outlets to explore the literature
on the subject. For statistical mechanics, interesting applications come
in the proofs of phase transitions in Euclidean field theories, e.g., that of
quark confinement (Borgs and Seiler [20]) or chiral symmetry breaking
(Salmhofer and Seiler [91]) in gauge theories.

Finally, there is the recent clever application of chessboard estimates
to control the rigidity of Dobrushin interfaces in the Ising (and some
other) three dimensional models (Shlosman and Vignaud [96]). This
direction will likely be further exploited to study interface states in
continuum-spin systems.

8 Three Open Problems

We finish with a brief discussion of three general open problems of the
subject covered by these notes which the present author finds worthy
of significant research effort.

In Chapters 3 and 4 we have shown how useful the infrared bound is
in proofs of symmetry breaking and control of the mean-field approxi-
mation. Unfortunately, the only way we currently have for proving the
IRB is reflection positivity. So our first problem is:

Problem 8.1. Consider models with the HamiltonianH=−
∑

〈x,y〉 Sx·
Sy. Prove the IRB directly without appeal to RP.

As already mentioned, a successful attempt in this direction has
been made by Sakai [90], who managed to apply the lace expansion to
a modified random current representation of the Ising model. However,
here we have in mind something perhaps more robust which addresses
directly the principal reason why we need RP, which is that

the spins (Sx) are not a priori independent Gaussian
Among approaches in this direction is the spherical approximation for
the O(n) model, in which the constraint |Sx| = 1 at every spin is
replaced by a constraint on

∑
x |Sx|2.

The IRB is often viewed as a rigorous version of spin-wave theory.
This theory, initiated in the work of Dyson [37] and others, describes
continuous deformations of the lowest energy states by means of an
appropriate Gaussian field theory. In Chapter 6 we saw that chessboard
estimates may be applied in conjunction with spin-wave calculations —
which are generally deemed to be the realm of the IRB — to prove phase
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transitions. This was possible because spin-waves disqualified all but
a finite number of ground states from candidacy for low-temperature
states. Notwithstanding, one might be able to do the same even in the
presence of infinitely many low-temperature states:

Problem 8.2. Prove symmetry breaking at low temperatures in sys-
tems with continuous internal symmetry — e.g., the O(2)-model —
without the use of the IRB. Chessboard estimates are allowed.

An interesting resource for thinking about this problem may be the
paper of Bricmont and Fontaine [21].

Further motivation to look at this problem comes from quantum
theory: The quantum Heisenberg ferromagnet is not RP (see Speer [99])
and so there is no proof of the IRB and, consequently, no proof of
low-temperature symmetry breaking. On the other hand, the classical
Heisenberg ferromagnet is RP and so the spin-condensation argument
applies. However, if we had a more robust proof of symmetry breaking
in the classical model, e.g., using chessboard estimates, one might hope
to extend the techniques of Biskup, Chayes and Starr [15] to include
also the quantum system.

While the theory described in these notes is not restricted exclu-
sively to ferromagnetic systems, in order to have the IRB one needs a
good deal of attractivity in the system. It is actually clear that the IRB
cannot hold as stated for antiferromagnets, e.g., hard core lattice gas,
which is a model with variables nx ∈ {0, 1} and the “Gibbs” weight
proportional to

λ
∑

x nx
∏

〈x,y〉
(1− nxny), (8.1)

or the q-state Potts antiferromagnet, which is the model in (2.7)
with J < 0. Indeed, the staggered long-range order, which is known
to occur in the hard core lattice gas once λ � 1, implies that the
macroscopically occupied mode is k = (π, . . . , π) rather than k = 0.
Nevertheless, we hope that some progress can be made and so we pose:

Problem 8.3. Derive a version of the IRB for the hard-core lattice gas
and/or the q-state Potts antiferromagnet at zero temperature.

Solving this problem would, hopefully, also provide an easier pas-
sage to the proof that the critical λ for the appearance of staggered
order tends to zero as d → ∞ — in fact, if the mean-field theory is
right then one should have λc ∼ c/d — and that the 3-coloring of Z

2

exhibits six distinct extremal measures of maximal entropy. These re-
sults have recently been obtained by sophisticated contour-counting
arguments [54, 55].
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16. M. Biskup and R. Kotecký, Forbidden gap argument for phase transitions
proved by means of chessboard estimates, Commun. Math. Phys. 264
(2006), no. 3, 631–656.



Phase Transitions in Lattice Models 81
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107. M. Zahradńık, Contour methods and Pirogov-Sinai theory for continu-

ous spin lattice models, In: R.A. Minlos, S. Shlosman and Yu.M. Suhov
(eds.), On Dobrushin’s way. From probability theory to statistical physics,
pp. 197–220, Amer. Math. Soc. Transl. Ser. 2, vol. 198, Amer. Math. Soc.,
Providence, RI, 2000.



Stochastic Geometry of Classical and Quantum
Ising Models

Dmitry Ioffe

Faculty of Industrial Engineering and Management, Technion, Haifa, Israel
ieioffe@ie.technion.ac.il

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

2 Classical Ising Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

2.1 Classical Ising Model Dressed as Quantum . . . . . . . . . . . . . . . . 89
2.2 Path Integral Representation and Poisson Limits . . . . . . . . . . . 91
2.3 FK Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
2.4 Random Current Representation . . . . . . . . . . . . . . . . . . . . . . . . . 99

3 Quantum Ising Models in Transverse Field . . . . . . . . . . 103

3.1 FK Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.2 Random Current Representation . . . . . . . . . . . . . . . . . . . . . . . . . 107

4 Curie-Weiss Model and Erdős-Rényi
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Fortuin-Kasteleyn (FK) and to the random current (RC) representa-
tion of classical and quantum Ising models via path integrals. No back-
ground in quantum statistical mechanics was assumed.

In Section 1 familiar classical Ising models are rewritten in the quan-
tum language. In this way usual FK and RC representations emerge as
different instances of Lie-Trotter product formula. Then I am following
[4] and set up a general notation for the Poisson limits.

In Section 2 both FK and the RC representations are generalized
to quantum Ising models in transverse field. The FK representation
was originally derived in [8] and [3]. The observation regarding the
RC representation seems to be new. Both representations are used to
derive formulas for one and two point functions and for the matrix and
reduced density matrix elements.

Section 3 is devoted to the quantum Curie-Weiss model in trans-
verse field. In the quantum mean field case the FK representation
is built upon a generalization of the classical random graph model.
I briefly explain recent results of [15], where the critical curve for quan-
tum random graphs was explicitly computed. The critical curve for the
quantum Curie-Weiss model itself is computed in the concluding Sub-
section 3.3 via partial Trotterization and a large deviation approach.

Of course, stochastic geometric methods apply for a large variety
of other models, see the seminal [4] as well as [18, 20] and references
therein. I did not try to provide a complete bibliography on the subject -
the emphasis was rather on trying to advertise probabilistic aspects of
quantum spin systems to a reader who is (like me) not very well familiar
with the latter. I, therefore, apologize for many excellent and relevant
papers which were not mentioned.

2 Classical Ising Model

We use the following notation for the classical Ising model:

• (Λ, E) is a finite graph with unoriented edges e = {i, j} = {j, i} ∈ E .
• J = {Jij ≥ 0} are coupling constants. By definition Jij > 0 ⇔
{i, j} ∈ E .

• h ∈ R is a magnetic field.
• ν ∈ ΩΛ Δ= {−1, 1}Λ is a spin configuration on Λ.

The Hamiltonian HΛ is a function on ΩΛ,

−HΛ(ν) =
∑

(i,j)∈E
Jijνiνj + h

∑

i∈Λ
νi.
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Given β ≥ 0 (inverse temperature) define the classical Ising-Gibbs
probability distribution μβ,hΛ on ΩΛ as

μβ,hΛ (ν) =
1

ZΛ(β, h)
e−βHΛ(ν),

where the normalizing constant (partition function) is given by

ZΛ(β, h) =
∑

ν∈ΩΛ

e−βHΛ(ν). (2.1)

In the sequel we shall use μβ,hΛ (•) for the expectation under μβ,hΛ . In
particular, the mean value of the spin at i is

μβ,hΛ (νi) =
1

ZΛ(β, h)

∑

ν∈ΩΛ

νie−βHΛ(ν), (2.2)

and the two-point function μβ,hΛ (νiνj) is

μβ,hΛ (νiνj) =
1

ZΛ(β, h)

∑

ν∈ΩΛ

νiνje−βHΛ(ν). (2.3)

Two examples we shall consider in this paper are:

1. Curie-Weiss model: Λ = {1, 2 . . . , N} and Jij ≡ 1/N .
2. Finite range Ising model: Λ ⊂ Z

d and Jij = 0 for ‖i− j‖ ≥ R.

2.1 Classical Ising Model Dressed as Quantum

Let us re-derive formulas (2.1), (2.2) and (2.3) in the quantum language.
In this way spin values±1 are understood as eigenvalues of Pauli matrix

σ̂z =
(

1 0
0 −1

)
. (2.4)

Let us define the corresponding eigenfunctions

ψ+1 =
(

1
0

)
and ψ−1 =

(
0
1

)
. (2.5)

Of course, σ̂zψν = νψν for ν = ±1. Throughout these lectures we shall
work only with real numbers. Using eigenfunctions ψ±1 one constructs
the following “lifting” of classical configurations ν ∈ ΩΛ: Define

XΛ =
⊗

i∈Λ
R

2.
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XΛ is a 2|Λ|-dimensional vector space over the field of reals. Classical
configurations ν ∈ ΩΛ are encoded in XΛ as tensor products,

Ψν
Δ= ⊗i∈Λψνi . (2.6)

The collection {Ψν}ν∈ΩΛ
is a complete orthonormal basis of XΛ with

respect to the scalar product

〈Ψν |Ψν′〉
Δ=

∏

i∈Λ
〈ψνi , ψν′i〉2,

where 〈•, •〉2 is the usual scalar product of R
2. With each i ∈ Λ we

associate a linear self-adjoint operator (symmetric matrix) σ̂z
i which

acts on i-th coordinate of Ψ as a copy of Pauli matrix σ̂z defined in
(2.4). Namely, for each ν ∈ ΩΛ,

σ̂z
iΨν

Δ= ψν1 ⊗ · · · ⊗ σ̂zψνi ⊗ . . . = νiΨν . (2.7)

Obviously, σ̂z
i and σ̂z

j commute, and, moreover,

σ̂z
i σ̂

z
jΨν = νiνjΨν . (2.8)

Define now the quantum Hamiltonian HΛ as a linear self-adjoint
operator on XΛ,

−HΛ =
∑

(i,j)∈E
Jij σ̂

z
i σ̂

z
j + h

∑

i∈Λ
σ̂z
i . (2.9)

Then, (2.7) and (2.8) imply,

HΛΨν = HΛ(ν)Ψν .

In other words, HΛ is diagonal in the {Ψν} basis, and with the
corresponding eigenvalues being equal to values of the classical Ising
Hamiltonian on configurations ν.

It is possible now to rewrite classical formulas (2.1)-(2.3) in terms
of the quantum Hamiltonian HΛ. First of all,

Tr
(
e−βHΛ

)
=

∑

ν∈ΩΛ

〈Ψν |e−βHΛ |Ψν〉 =
∑

ν∈ΩΛ

e−βHΛ(ν) = ZΛ(β, h).

(2.10)
Similarly,

μβ,hΛ (νi) =
Tr

(
σ̂z
i e
−βHΛ

)

Tr (e−βHΛ)
and μβ,hΛ (νiνj) =

Tr
(
σ̂z
i σ̂

z
je
−βHΛ

)

Tr (e−βHΛ)
.

(2.11)
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2.2 Path Integral Representation and Poisson Limits

Since all the operators {σ̂z
i} commute,

e−βHΛ =
(∏

(i,j)

eΔJij σ̂
z
iσ̂

z
j

∏

i

eΔhσ̂
z
i

)β/Δ
. (2.12)

To facilitate the exposition we shall focus now on the case of zero
magnetic field h = 0, the full Hamiltonian with both non-zero h will
be considered in Subsection 2.3 and in Subsection 2.4, furthermore, an
additional positive field in the traverse direction will be considered in
Section 3.

For small Δ we shall linearize eΔJij σ̂
z
iσ̂

z
j in (2.12) in two different

ways:
1) Write

Jij σ̂
z
i σ̂

z
j = JijI− JijI + Jij σ̂z

i σ̂
z
j .

Then,

e−βHΛ = eβ
∑

(i,j) Jij lim
Δ→0

(∏

(i,j)

{
(1−ΔJij)I +ΔJij σ̂z

i σ̂
z
j

})β/Δ
. (2.13)

This will lead to the random current representation of the model.
2) Write

Jij σ̂
z
i σ̂

z
j = JijI− 2JijI + 2Jij

I + σ̂z
i σ̂

z
j

2
.

In the latter case,

e−βHΛ = eβ
∑

(i,j) Jij lim
Δ→0

(∏

(i,j)

{
(1− 2ΔJij)I + 2ΔJij

I + σ̂z
i σ̂

z
j

2

})β/Δ
.

(2.14)

As we shall see below such linearization leads to the FK (Fortuin-
Kasteleyn) representation of the model. Thus both the FK and the
random current representations are instances of path integral represen-
tation via Poisson limits which, following [4], we proceed to discuss in
a somewhat general context.
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General Setup for Poisson Limits

The fact that the operators σ̂z
i σ̂

z
j in (2.13) or operators (I + σ̂z

i σ̂
z
j)/2

in (2.14) commute is not essential for the path integral representation
via Poisson limits. For the rest of this Subsection we shall work in the
following general context:

1. X is an M -dimensional vector space (over R) with a scalar product
〈•|•〉 and an orthonormal basis {Ψi}

2. K1, . . . ,Km are self-adjoint operators (matrices) on X, in general
non-commuting.

3. λ1, . . . , λm are positive numbers.

Given β > 0, we would like to find a probabilistic representation for

exp
{
β
m∑

1

λlKl

}
(2.15)

The linearization relies on two basic facts from theory of matrices:

Lie-Trotter Formula

Let A and B be two matrices. Then

eA+B = lim
n→∞

(
eA/neB/n

)n
. (2.16)

Proof (following [19]). Set

Tn = e(A+B)/n and Sn = eA/neB/n.

Then,

Tnn − Snn =
n−1∑

l=0

(
Tn−ln Sln − Tn−l−1

n Sl+1
n

)
=
n−1∑

l=0

Tn−l−1
n (Tn − Sn)Sln.

Now,

Tn−Sn=
∞∑

k=0

1
k!

(
A+B
n

)k
−
{ ∞∑

k=0

1
k!

(
A

n

)k}{ ∞∑

k=0

1
k!

(
B

n

)k}
=O

( 1
n2

)
.

On the other hand, ‖Tn−l−1
n ‖ · ‖Sln‖ ≤ e‖A‖+‖B‖ for all l = 1, . . . , n− 1.

��
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Product Expansion Formula

Let A1, A2, . . . , An be self-adjoint matrices and Ψ, Ψ ′ two vectors in X.
Then,

〈Ψ |A1 . . . An|Ψ ′〉 =
∑

Ψi1
,...Ψin

〈Ψ |A1|Ψi1〉〈Ψi1 |A2|Ψi2〉 . . . 〈Ψin−1 |An|Ψ ′〉,

(2.17)

where Ψil-s run through the elements of the orthonormal basis {Ψi} for
all l = 1, . . . , n− 1.

Proof. In the case n = 2 (2.17) follows from expansion of A1Ψ in the
basis {Ψi},

A1Ψ =
M∑

i1=1

〈Ψ |A1|Ψi1〉Ψi1 .

The general case follows by induction. ��

Path Integral Representation

Let us go back to (2.15). By Lie-Trotter formula (2.16),

exp
{
β
m∑

1

λlKl

}
= eβ

∑
λl lim
Δ→0

( m∏

l=1

{(1−Δλl)I +ΔλlKl}
)β/Δ
.

(2.18)

In the sequel we shall tacitly assume that β/Δ ∈ N. For each l =
1, . . . ,m consider a sequence of iid Bernoulli random variables

ξ
l
= {ξl(1), ξl(2) . . . , ξl(β/Δ)} ,

with the probability of success being equal to Δλl. We assume that
the sequences ξ

l
are independent and let P

λ
β,Δ be the corresponding

probability measure on

{0, 1}β/Δ × · · · × {0, 1}β/Δ

Above λ is a shorthand notation for the vector of success rates
{λ1, . . . , λm}. Then we can expand the expression on the right-hand
side of (2.18) as follows,

( m∏

l=1

{(1−Δλl)I +ΔλlKl}
)β/Δ

=
∑

a1,...am

P
λ
β,Δ

( m⋂

l=1

{
ξ
l
= al

})
Ka,

(2.19)
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where the matrix Ka is defined by

Ka Δ= Ka1,...,am
=
β/Δ∏

j=1

{ m∏

l=1

((1− al(j))I + al(j)Kl)
}
. (2.20)

Our next step is to associate with each sequence ξ
l
of Bernoulli trials a

point process of arrivals of operators Kl on the interval [0, β]. Define,

ξΔl =
β/δ∑

j=1

ξl(j)δiΔ. (2.21)

Let Ψ and Ψ ′ be two elements of the basis {Ψi}. In order to derive
a path integral representation of 〈Ψ |Ka1 , . . . ,Kam

|Ψ ′〉 notice first of
all that up to probabilities of order O(Δ) we may restrict attention
to sequences a1, . . . , am with disjoint occurrence of successes, that is∑
l al(j) = 0 or 1 for every j = 1, . . . , β/Δ. In the language of (2.21)

this means that the realizations of ξΔ1 , . . . , ξ
Δ
m are pairwise disjoint and

hence for each arrival time

t ∈ ξΔ Δ= ∪ξΔl =

{
jΔ :

m∑

l=1

al(j) = 1

}
,

there is a well defined arrival type lΔ(t) ∈ {1, . . . ,m}. Accordingly, one
can rewrite

Ka1,...,am
=
β/Δ∏

j=1

{
δ{jΔ/∈ξΔ}I + δ{jΔ∈ξΔ}KlΔ(jΔ)

}
Δ=
β/Δ∏

j=1

K̃Δj .

By the product expansion formula (2.17),

〈Ψ |Ka|Ψ ′〉 =
∑

Ψi1
,...Ψiβ/Δ−1

〈Ψ |K̃Δ1 |Ψi1〉
β/Δ−1∏

j=2

〈Ψij−1 |K̃Δj |Ψij 〉〈Ψiβ/Δ−1
|K̃Δβ/Δ|Ψ ′〉.

(2.22)
Of course,

〈Ψl|K̃Δj |Ψk〉 =
{

δ{Ψl=Ψk} if jΔ /∈ ξΔ
〈Ψl|KlΔ(jΔ)|Ψk〉 if jΔ ∈ ξΔ (2.23)

We can now put this into the continuous time context as follows: To
a given sequence Ψ, Ψi1 , . . . , Ψiβ/Δ−1

, Ψ ′ associate a piecewise constant
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function ΨΔ : [0, β] → {Ψj}, such that ΨΔ = Ψ on [0, Δ), ΨΔ(β) = Ψ ′,
and,

ΨΔ = Ψij on [jΔ, (j + 1)Δ) for j = 1, . . . β/Δ− 1.

Given a realization ξΔ let us say that a piecewise constant function
ΨΔ as above is compatible with ξΔ, ΨΔ ∼ ξΔ if all the jumps of ΨΔ

occur only at arrival times of ξΔ. By (2.23) only compatible functions
contribute to (2.22). In fact, in the notation just introduced the latter
expansion reads as,

〈Ψ |Ka1,...,am
|Ψ ′〉 =

∑

ΨΔ∼ξΔ

∏

t∈ξΔ
〈ΨΔ(t−)|KlΔ(t)|ΨΔ(t)〉. (2.24)

Poisson Limits

A basic result on Poisson approximation implies that
(
ξΔ1 , . . . , ξ

Δ
m, l

Δ
)
⇒ (ξ1, . . . , ξm, l)

where (ξ1, . . . , ξm) are independent Poisson point processes on [0, β]
with intensities (λ1, . . . , λm) respectively. Let us use P

λ
β for the distri-

bution of the latter. By independence there are no simultaneous ar-
rivals, that is the type l(t) ∈ {1, . . . ,m} of an arrival is well defined for
each t ∈ ξ Δ= ∪ξl. Furthermore, conditioned on the realization of ξ the
arrival types l(t) are independent and

P
λ
β

(
l(t) = l

∣∣ t ∈ ξ
)

=
λl

λ1 + · · ·+ λm
.

Passing to the limit Δ → 0 in (2.24) and (2.19), we arrive to the fol-
lowing representation of matrix elements of exp {β

∑
λlKl}: For every

two elements of the basis Ψ, Ψ ′ ∈ {Ψi},

〈Ψ |eβ
∑
λlKl |Ψ ′〉

exp {β
∑
l λl}

=
∫

P
λ
β (dξ1 . . .dξm)

∑

Ψ∼ξ

∏

t∈ξ
〈Ψ(t−)|Kl(t)|Ψ(t)〉,

(2.25)

where, given a realization of ξ the summation is over all ξ-compatible
(having jumps only at arrival times of ξ) piecewise constant right-
continuous functions Ψ : [0, β] �→ {Ψi}, which, in addition, satisfy
boundary conditions Ψ(0) = Ψ and Ψ(β) = Ψ ′. Clearly, since X is
finite dimensional, and since, there are P

λ
β-a.s. finite number of arrivals

of ξ, there are P
λ
β-a.s. finitely many such compatible functions.
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Formula (2.25) enables a re-interpretation of various quantities
related to the Hamiltonians H in terms of stochastic geometry of the
family of Poisson processes ξ. For example,

Tr
(
eβ

∑
λlKl

)

exp {β
∑
l λl}

=
∫

P
λ
β (dξ)

∑

Ψ∼ξ
〈Ψ(0)|Ψ(β)〉

∏

t∈ξ
〈Ψ(t−)|Kl(t)|Ψ(t)〉.

(2.26)
In general, given a self-adjoint matrix A,

Tr
(
Aeβ

∑
λlKl

)

exp {β
∑
l λl}

=
∫

P
λ
β (dξ)

∑

Ψ∼ξ
〈Ψ(0)|A|Ψ(β)〉

∏

t∈ξ
〈Ψ(t−)|Kl(t)|Ψ(t)〉.

(2.27)
The approach has two degrees of freedom to play with:

1. There are different ways to decompose H as H = −
∑
λlKl.

2. There are different choices of orthonormal bases {Ψi} of X.

In the following two subsections we shall consider the FK and the
RC (random current) representation of classical Ising systems (2.9)
as different instances of the path integral representation (2.25). Then
in Section 3 we shall develop the FK and the RC representation for
genuine quantum systems in traverse magnetic field.

2.3 FK Representation

Classical FK representation corresponds to the decomposition of the
Hamiltonian HΛ in (2.9) as,

−HΛ = −

⎛

⎝
∑

(i,j)

Jij +
∑

i

h

⎞

⎠ I +
∑

(i,j)

2Jij
I + σ̂z

i σ̂
z
j

2
+

∑

i

2h
I + σ̂z

i

2
,

with matrix elements of e−βHΛ being computed in the z-basis (2.6).
In the language of the preceeding Subsection, we are dealing with

independent Poisson processes ξij of arrivals of operators Kij
Δ=

I+σ̂z
iσ̂

z
j

2
with intensities 2Jij and with independent Poisson processes ξi of ar-

rivals of operators Ki
Δ= I+σ̂z

i
2 with intensities 2h each. Let ν, ν ′ ∈ ΩΛ

be two classical configurations and let, as before, Ψν and Ψν′ be the
corresponding elements of the basis of XΛ. Then,

〈Ψν |Kij |Ψν′〉 = δ{ν=ν′}δ{νi=νj}. (2.28)
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Similarly,
〈Ψν |Ki|Ψν′〉 = δ{ν=ν′}δ{νi=1}. (2.29)

Due to our choice of the orthonormal basis, any piecewise constant
function Ψ : [0, β] �→ {Ψν} is of the form Ψν(•), where ν : [0, β] �→ ΩΛ is
a piecewise constant classical spin configuration valued function. In fact
relations (2.28) and (2.29) imply that, whatever are the realizations of
Poisson processes ξ = {ξij , ξi} the only compatible ν ∼ ξ are constant
configurations ν(•) ≡ const. Furthermore, an arrival of Kij at time
t imposes and additional constraint νi(t) = νj(t), whereas an arrival
of Ki imposes an additional constraint νi(t) = 1. It is convenient to
explore (2.25) in terms of the following graphical representation (see
Figure 1 below):

To each site i ∈ Λ we attach a time interval Sβ
Δ= [0, β]. In order to

distinguish between intervals attached to different sites we use notation
S
i
β . Points on S

i
β labeled as (i, t). An arrival of ξij at time t is visualized

as a link between (i, t) and (j, t). An arrival of ξi at time t puts a ∗-
mark at (i, t). It is also convenient to think about all ∗-marks being
linked (wired) to some ghost site g. Two intervals S

i
β and S

j
β are said

to be connected if ξij �= ∅. Thus, any realization of {ξij} splits

*
*

*

*

*

*

*

10 2 4 5 6 9 103 7 8

¯

Λ

Fig. 1. The box Λ is split into three connected components, C1 =
{1, 2, 3, 4, 5} × Sβ , C2 = {6, 7, 8, 9} × Sβ and C3 = {10} × Sβ . Components
C1 and C3 are wired, whereas C2 is free
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Λ× Sβ =
⋃

i∈Λ
S
i
β = ∪Cl

into the union of maximal connected components. Of course, each Cl
above corresponds to a subset Al of Λ,

Cl =
⋃

i∈Al

S
i
β .

A component Cl is said to be wired if ξi �= ∅ for some i ∈ Al. It is
convenient to link all wired components into one connected component.
Given a realization ξ = {ξij , ξi} of all Poisson processes of arrivals of
operatorsKij andKi let #w(ξ) be the number of all maximal connected
components Cl which are not wired to the ghost site g. Then the number
of (constant ) classical trajectories which satisfy (2.28) and (2.29) is
precisely 2#w(ξ). For each such trajectory ν(•) ≡ ν,

∏

t∈ξ
〈Ψν |Kl(t)|Ψν〉 = 1.

Consequently, let P
J,h
β,Λ be the (Poisson ) distribution of ξ. Then, (2.25)

implies,

Tr
(
e−βHΛ

)
= eβ(

∑
(i,j) Jij+

∑
i h)P

J,h
β,Λ

(
2#w(ξ)

)
. (2.30)

Define a new measure P̃
J,h
β,Λ on trajectories of point processes ξ,

P̃
J,h
β,Λ (dξ) =

2#w(ξ)
P

J,h
β,Λ (dξ)

P
J,h
β,Λ

(
2#w(ξ)

) . (2.31)

P̃
J,h
β,Λ is called FK or random cluster measure. Using (2.11) and (2.27) we

arrive to the following stochastic geometric representation of classical
expectations,

μβ,hΛ (νi) = P̃
J,h
β,Λ (i←→ g) and μβ,hΛ (νiνj) = P̃

J,h
β,Λ (i←→ j) ,

(2.32)

where the event {i←→ g} means that the connected component of S
i
β

is wired, whereas {i←→ j} means that S
i
β and S

j
β belong to the same

connected component (including the case when {i←→ g}∩{j ←→ g}).
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2.4 Random Current Representation

In its turn classical RC representation corresponds to the decomposi-
tion of the Hamiltonian HΛ in (2.9) as,

−HΛ =
∑

(i,j)

Jij σ̂
z
i σ̂

z
j +

∑

i

hσ̂z
i .

The trick is to compute matrix elements of e−βHΛ in the x-basis, which
is defined as follows: With ψ±1 being defined as in (2.5), set

φ±1 =
1√
2

(ψ1 ± ψ−1) . (2.33)

Clearly {φ−1, φ1} is an orthonormal basis of R
2. To a given classical

x-configuration ϑ ∈ ΩΛ one corresponds the vector,

Φϑ = ⊗i∈Λφϑi . (2.34)

The collection {Φϑ} is an orthonormal basis of XΛ. In the x-basis Pauli
matrix σ̂z looks like

σ̂z =
(

0 1
1 0

)
or σ̂zφ±1 = φ∓1. (2.35)

Thus in the x-basis σ̂z is just a spin-flip operator. As in (2.7) the action
of σ̂z

i on Φϑ is given by

σ̂z
iΦϑ = φϑ1 ⊗ · · · ⊗ σ̂zφϑi ⊗ . . . .

In other words, σ̂z
i flips i-th component of Φϑ.

In the language of Subsection 2.2, we are dealing with independent
Poisson processes ξij of arrivals of operatorsKij

Δ= σ̂z
i σ̂

z
j with intensities

Jij and with independent Poisson processes ξi of arrivals of operators

Ki
Δ= σ̂z

i with intensities h each. We continue to employ the running
notation P

J,h
β,Λ for the distribution of ξ.

Let ϑ, ϑ′ ∈ ΩΛ be two classical x-configurations and let, as before,
Φϑ and Φϑ′ be the corresponding elements of the x-basis of XΛ. Then,

〈Ψϑ|Kij |Ψν′〉 = δ{ϑ′=σ̂z
iσ̂

z
jϑ} and 〈Ψϑ|Ki|Ψν′〉 = δ{ϑ′=σ̂z

iϑ}. (2.36)

In other words, each arrival of operator Kij enforces a simultaneous
flip of i-th and j-th coordinate of Φ, and each arrival of operator Ki
enforces a flip of i-th coordinate of Φ. Therefore, given a realization of
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ξ, compatible space-time configurations Φ(·) ∼ ξ are deterministically
recovered from the initial value Φ(0). Therefore, there are exactly 2|Λ|

compatible configurations for each realization of ξ.
Consider now the representation of the trace in (2.26). Clearly a

space-time configuration Φ(·) contributes only if Φ(0) = Φ(β). In view
of the above description of action of operators Kij and Ki, this ob-
viously imposes a restriction on admissible realization of ξ: Namely,
there are trajectories Φ ∼ ξ with Φ(0) = Φ(β) if and only if ξ flips each
coordinate i ∈ Λ even number of times.

With a slight abuse of notation let ξij and ξi also denote the number
of arrivals of Kij , respectively Ki on the interval [0, β]. In this way ξ
will be called random currents. The total current through i ∈ Λ is
ξ[i] =

∑
j ξij + ξi and the total current through the ghost site g is

ξ[g] =
∑
i ξi. The boundary of a current is,

∂ξ
Δ= {u ∈ Λ ∪ g : ξ[u] is odd} . (2.37)

If ∂ξ = ∅, then all of 2|Λ| compatible configurations Ψ(•) ∼ ξ satisfy
Φ(0) = Φ(β), otherwise (if ∂ξ �= ∅) none of them is periodic. Conse-
quently, (2.26) implies,

Tr
(
e−βHΛ

)

eβ(
∑

(i,j) Jij+
∑

i h)
= 2|Λ|PJ,h

β,Λ (∂ξ = ∅) . (2.38)

The following representation of one and two point functions is now
almost straightforward,

μβ,hΛ (νi) =
P

J,h
β,Λ (∂ξ = {i, g})
P

J,h
β,Λ (∂ξ = ∅)

and μβ,hΛ (νiνj) =
P

J,h
β,Λ (∂ξ = {i, j})
P

J,h
β,Λ (∂ξ = ∅)

(2.39)

Switching Lemma

Let ξ and η be two independent random currents distributed according
to the product Poisson measure P

J,h
β each. We continue to P

J,h
β to denote

the product measure. Then, for every i, j and for every subset A ⊆
Λ ∪ g,

P
J,h
β,Λ (∂ξ = {i, j}) P

J,h
β,Λ (∂η = A) = P

J,h
β,Λ

(
∂ξ = ∅; ∂η = AΔ {i, j} ; i

ξ+η←→ j
)
,

(2.40)

where the event
{
i
ξ+η←→ j

}
means that there exists a path of bonds

b ∈ E from i to j with ξ(b) + η(b) > 0.



Stochastic Geometry of Ising Models 101

We refer to [1] for a proof of (2.40). In view of (2.39) an immediate
consequence is the following representation of the truncated two-point
function:

μβ,hΛ (νiνj)− μβ,hΛ (νi)μ
β,h
Λ (νj) =

P
J,h
β,Λ

(
∂ξ = ∅; ∂ν = {i, j} ; i

ξ+ν

�←→ g

)

P
J,h
β,Λ (∂ξ = ∅; ∂η = ∅)

.

(2.41)

Exponential Decay of Two-point Functions
at Non-zero Magnetic Fields

Representation (2.41) and similar formulas pave the way for a stochastic
geometric interpretation of semi-invariants and give rise to a useful
intuition. As an example let us show how (2.41) implies that classical
Ising truncated two-point functions always have non-zero exponential
rate of decay once h �= 0. The argument below was developed together
with Roberto Fernandez and Yvan Velenik some time ago. As it was
pointed out by Yvan, a conventional proof could be found in [12].

Let κ = ξ+η be the combined current. Any realization of κ splits Λ
into a disjoint union of maximal connected components: as before we
say that i and j are connected if there exists a chain of bonds b leading
from i to j with κ(b) > 0 on each bond. Clearly {∂ξ = ∅; ∂η = {i, j}}
implies that ∂κ = {i, j} and, in particular that i and j are connected
in κ or, in other words, that i and j belong to the same connected
component C of κ. If R is the range of interaction, then |C| ≥ |i−j|/R,

as soon as we impose an additional constraint
{
C

κ
�←→ g

}
. It is almost

obvious now why (2.41) implies exponential decay: one should pay a
fixed price to disconnect each site l ∈ C from the ghost site g, see
Figure 2.

It remains to make the last remark precise. For any connected set
C ⊂ Λ define # (E(C,Λ \ C)) as the number of edges in E(C,Λ \ C),
where the latter is the set of edges b with Jb > 0, which have one end-
point in C and another in Λ \C. The probability p(C,Λ \C) that none
of the processes κb; b ∈ E(C,Λ \ C) arrives on the interval [0, β] is

p(C,Λ \ C) = exp
{
−2β

∑

b∈E(C,Λ\C)

Jb

}
.

Given a connected set C and i, j ∈ C, define the following event

Aij(C) =
{
∂ξC = ∅; ∂ηC = {i, j} ; C is connected in κC ; C

κC

�←→ g

}
,
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i
j

C

Fig. 2. Each site l inside the connected component C has a chance to be
connected by a direct non-zero current to the ghost site g

where ξC , ηC (respectively ξΛ\C , ηΛ\C) and κC (respectively κΛ\C) are
the restrictions of the corresponding processes to the bonds with either
both end-points at C (Λ \ C) or with one end-point at C (Λ \ C)
and another end-point being g. In this notation the expression in the
numerator in (2.41)

∑

C connected

P
J,h
β,Λ

(
∂ξΛ\C = ∅; ∂ηΛ\C = ∅

)
· p(C,Λ \ C) · PJ,h

β,Λ (Aij(C)) .

(2.42)

On the other hand, the denominator in (2.41) is certainly bounded
below by

∑

C connected

P
J,h
β,Λ

(
∂ξΛ\C = ∅; ∂ηΛ\C = ∅

)
· p(C,Λ \ C) · PJ,h

β,Λ

(
Ae
ij(C)

)
,

(2.43)
where the event

Ae
ij(C) = {∂ξC = ∅; ∂ηC = ∅; C is connected in κC} .

We claim that there exist two positive constants c1 and c2 which depend
on β, h (but not on the range R of the interaction, the dimension of
the lattice, connected C and {i, j} ⊆ C), such that,

P
J,h
β,Λ (Aij(C))

P
J,h
β,Λ

(
Ae
ij(C)

) ≤ c1e−c2|i−j|/R. (2.44)
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Indeed, for each current ηC with ∂η = {i, j} and g
ηC

�←→ C, we may
construct a family of currents

{ηC}e =
{
η+(2ri+1)δ(i,g)+(2rj+1)δ(j,g)+

∑

k∈C\{i,j}
2rkδ(k,g)

}
rl=0,1,...for l∈C .

Thus, the family {ηC}e is generated by tuples r = {rl}l∈Λ of non-
negative integers. Evidently,

{ηC}e ∩
{
η′C

}e = ∅,

whenever ηC �= η′C . Furthermore, (ξC , ηC) ∈ Aij(C) ⇒ ξC × {ηC}e ⊆
Ae
ij(C). However, for such ηC ,

P
J,h
β,Λ ({ηC}e)
P

J,h
β,Λ (ηC)

= (sinh(βh))2 · (cosh(βh))|C|−2 ,

and (2.44) follows.

3 Quantum Ising Models in Transverse Field

Quantum Ising Hamiltonian in transverse field λ is given by

−HΛ =
∑

(i,j)

Jij σ̂
z
i σ̂

x
j + h

∑

i

σ̂z
i + λ

∑

i

σ̂x
i , (3.1)

where λ ≥ 0, and (in the z-basis),

σ̂z =
(

1 0
0 −1

)
. and σ̂x =

(
0 1
1 0

)
(3.2)

Since matrices σ̂x and σ̂z do not commute, as soon as the strength of
the transverse field λ > 0, the operator HΛ does not have diagonal
form neither in z-basis (2.6), nor in the x-basis (2.34). Nevertheless,
the analog of Lie-Trotter product formula still holds,

e−βHΛ = lim
Δ→0

(∏

(i,j)

eΔJij σ̂
z
iσ̂

z
j

∏

i

eΔhσ̂
z
i

∏

i

eΔλσ̂
x
i

)β/Δ
. (3.3)

As in the classical case various choices of bases and of decomposition of
HΛ lead to different stochastic geometric representations of the model.
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3.1 FK Representation

As in the classical case the traces are computed in the z-basis. As for
the decomposition represent −HΛ as

−
(∑

(i,j)

Jij +
∑

i

h +
∑

i

λ

)
I +

∑

(i,j)

2Jij

I + σ̂z
i σ̂

z
j

2
+

∑

i

2h
I + σ̂z

i

2
+

∑

i

λ(σ̂x
i + I).

In the language of Subsection 2.2 we are dealing with Poisson process
ξ of arrivals on the interval [0, β] of the following type of operators:

• Operators Kij =
(
σ̂z
i σ̂

z
j + I

)
/2 which arrive with intensities 2Jij .

We shall call these processes links and denote them as ξij .
• Operators Khi = (σ̂z

i + I) /2 which arrive with intensities 2h. We
shall call these processes links to g and denote them as ξhi .

• Operators Kλi = σ̂x
i +I which arrive with intensities λ. We shall call

these processes holes and denote them as ξλi .

As in Subsection 2.3 piece-wise constant functions Ψ : [0, β] �→ {Ψν}
are labeled by piece-wise constant classical trajectories ν : [0, β] �→ ΩΛ.
Given a realization ξ =

{
ξij , ξ

h
i , ξ

λ
i

}
let us try to describe the family of

compatible trajectories ν ∼ ξ.
1. Since 〈Ψν |Kij |Ψν′〉 = δ{ν=ν′}δ{νi=νj}, an arrival of an (i, j)-link at

time t imposes the constraint ν(t, i) = ν(t, j).
2. Since 〈Ψν |Khi |Ψν′〉 = δ{ν=ν′}δ{νi=1}, an arrival of an (i, g)-link at

time t imposes the constraint ν(t, i) = 1.
3. Since

〈Ψν |Kλi |Ψν′〉 = δ{νj=ν′j for all j �=i},

an arrival of an i-hole at time t enables a flip of i-th coordinate
of ν(t, ·).

Thus, contrary to the classical situation considered in Subsection 2.3,
compatible configurations ν ∼ ξ are permitted to have jumps at arrival
times of ξλ. It is convenient to visualize compatible periodic ν(·) as
follows (see Figure 3): For each i ∈ Λ the process of holes ξλi splits the
circle S

i
β (which is the interval i× [0, β] with the end-points (i, 0) and

(i, β) identified) into a disjoint union of connected intervals. Two such
intervals i×I ⊆ S

i
β and j×J ⊆ S

j
β are said to be connected in ξ if there

is an arrival of ξij at a time t ∈ I ∩ J . A maximal connected cluster
∪l {il × Il} (with il-s being not necessarily different, but with {il × Il}∩
{im × Im} = ∅ whenever l �= m) is said to be connected to the ghost
site g if for some for some il a process ξhil arrives at t ∈ Il. Otherwise
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C3

C3

C2
C2

C1

C1

¯

0

Fig. 3. Configurations with periodic boundary conditions ν(i, 0) = ν(i, β).
Connected components C1 and C3 are linked to g and hence ν ≡ 1 on them.
Connected component C2 is “free” and hence one can colour it in either of
±1 colours.

such maximal connected cluster is called free. Define #w (ξ) to be the
number of maximal free connected clusters of ξ. Then, using P

J,h,λ
β,Λ for

the reference product distribution of independent Poisson processes ξ,
we arrive to the following quantum version of the FK representation
(2.30) of the trace,

Tr
(
e−βHΛ

)
= eβ(

∑
(i,j) Jij+

∑
i h+

∑
i λ)P

J,h
β,Λ

(
2#w(ξ)

)
. (3.4)

As in the classical case define a new measure P̃
J,h,λ
β,Λ on trajectories of

point processes ξ,

P̃
J,h,λ
β,Λ (dξ) =

2#w(ξ)
P

J,h,λ
β,Λ (dξ)

P
J,h,λ
β,Λ

(
2#w(ξ)

) . (3.5)

Once again, using (2.11) and (2.27) we arrive to the following stochastic
geometric representation of expectations,

Tr
(
σ̂z
i e
−βHΛ

)

Tr (e−βHΛ)
= P̃

J,h,λ
β,Λ ((i, 0) ←→ g) (3.6)

where the event {(i, 0) ←→ g} means that the S
i
β interval containing

(i, 0) belongs to a cluster which is connected to g. Similarly,

Tr
(
σ̂z
i σ̂

z
je
−βHΛ

)

Tr (e−βHΛ)
= P̃

J,h,λ
β,Λ ((i, 0) ←→ (j, 0)) , (3.7)
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where the event {(i, 0) ←→ (j, 0)} means that the corresponding S
i
β

and S
j
β intervals belong to the same connected cluster.

Ground States, Matrix and Reduced Density Matrix Elements Let us
fix a finite graph (Λ, E), coupling constants J and λ ≥ 0. In order to
facilitate the notation we shall set magnetic filed in z-direction to zero,
h = 0. For each β ∈ R, z-matrix elements ρz

β(ν, ν
′) are defined via,

ρz
β(ν, ν

′) =
〈Ψν |e−βHΛ |Ψν′〉

Tr (e−βHΛ)
. (3.8)

In order to derive an appropriate expression in terms of Poisson arrival
measures P

J,λ
β,Λ or in terms of the FK measures P

J,λ
β,Λ we should introduce

a modification of the notion of connected components of ξ. Originally,
those were defined as unions of sub-intervals of Sβ . However, in the
computation of matrix elements we, obviously, do not impose periodic-
ity conditions. In the sequel, given a subset A ⊂ Λ and a configuration ξ
let ξA be obtained from ξ via adding holes at all the points (i, 0) = (i, β)
with i ∈ A. One can think about ξA in terms of slitting the A-part of
ξ along t = 0.

Any piece-wise trajectory ν : [0, β] → ΩΛ which contributes to the
numerator in (3.8) satisfies boundary conditions,

ν(i, 0) = νi and ν(i, β) = ν ′i ∀ i ∈ Λ.

As a result, realizations of ξ which place points (i, T ) and (j, S) (with
i, j ∈ Λ and T, S = 0 orβ) with ν(i, T ) �= ν(j, S) into same connected
components of the slit configuration ξΛ do not have compatible trajec-
tories at all. Let us say that ξΛ ∼ {ν, ν ′}, if the latter does not happen.
If ξΛ ∼ {ν, ν ′}, then the set of all ξ-compatible trajectories, which con-
tribute to the denominator in (3.8) is constructed in the following way:
Each connected cluster of ξΛ whose closure hits either t = 0 or t = β
layers inherits the z-spin value from ν or ν ′. On the other hand, each
interior cluster of ξΛ or, alternatively each cluster of ξ which does not
contain points with 0 = β time coordinates, could be still coloured into
±1. Clusters of ξ which are not interior are called boundary. Thus, if
we use #0(ξ) and #∂(ξ) = #(ξ) − #0(ξ) for the number of interior
(respectively boundary ) clusters of ξ,

ρz
β(ν, ν

′) =
P

J,λ
β,Λ

(
ξΛ ∼ {ν, ν ′} ; 2#0(ξ)

)

P
J,λ
β,Λ

(
2#(ξ)

) = P̃
J,λ
β,Λ

(
ξΛ ∼

{
ν, ν ′

}
; 2−#∂(ξ)

)
.

(3.9)
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For each λ > 0 there exist non-trivial limits P
J,λ
∞,Λ and P̃

J,λ
∞,Λ as β →∞.

These measures could be constructed directly: P
J,λ
∞,Λ is just the distri-

bution of Poisson processes of arrival ξ on R. Connected components
of ξ are understood now as linked sub-intervals of R over various spa-
tial coordinates i ∈ Λ. The FK measure P̃

J,λ
∞,Λ is then constructed via

modification of P
J,λ
∞,Λ by the 2#(ξ) factor (as a limiting procedure, of

course). Boundary clusters of the slit configuration ξΛ are coloured in
this way according to ν just above the t = 0 layer and according to ν ′

just below it. If we slit along all of Λ, then the compatibility condition
ξΛ ∼ {ν, ν ′} decouples into {ξ+ ∼ ν} ∩ {ξ− ∼ ν ′} for the upper and
lower halves ξ+ and ξ− of configuration ξ. At this point it makes sense
to introduce Poisson P

J,λ,+
∞,Λ and, accordingly, FK P̃

J,λ,+
∞,Λ measures for

arrival processes on R+. It is straightforward now to check that matrix
elements ρz

∞(ν, ν ′) = 〈Ψν |Ψ〉〈Ψ |Ψν′〉, which are generated by projections
of the ground state Ψ of HΛ are given by,

ρz
∞(ν, ν ′) = P̃

J,λ
∞,Λ

(
ξΛ ∼

{
ν, ν ′

}
; 2−#∂(ξ)

)
. (3.10)

In the notation just introduced above the latter expression equals to

〈Ψν |Ψ〉〈Ψ |Ψν′〉 = P̃
J,λ,+
∞,Λ

(
ξ ∼ ν; 2−#∂(ξ)

)
P̃

J,λ,+
∞,Λ

(
ξ ∼ ν ′; 2−#∂(ξ)

)
.

Similarly, for A ⊆ Λ and θ, θ′ ∈ {±1}A, the reduced density matrix
entry ρz

∞,A(θ, θ′) is given by

ρz
∞,A(θ, θ′) = P̃

J,λ
∞,Λ

(
ξA ∼

{
θ, θ′

}
; 2−#∂,A(ξ)

)
, (3.11)

where the compatibility condition ξA ∼ {ν, ν ′} for the slit configuration
ξA is defined in the obvious way, and #∂,A(ξ) stands for the number of
connected clusters of ξ which contain points (0, i) with i ∈ A.

3.2 Random Current Representation

In order to derive an appropriate version of random current represen-
tation let us rewrite the Hamiltonian (3.1) as

−
(∑

i

λ

)
I +

∑

(i,j)

Jij σ̂
z
i σ̂

z
j +

∑

i

hσ̂z
i +

∑

i

2λ
σ̂x
i + I
2

.

As in the classical case the traces are going to be computed in the
x-basis (2.34). Thus, in the language of Subsection 2.2 we are dealing
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with Poisson process ξ of independent arrivals on [0, β] of the following
type of operators:

• Operators of simultaneous (ij)-flipsKij = σ̂z
i σ̂

z
j which arrive with in-

tensities Jij . We shall denote the corresponding Poisson process ξij .
• Operators of i-flips Khi = σ̂z

i which arrive with intensity h each. The
corresponding Poisson processes are denoted as ξhi .

• Operators Kλi = (σ̂x +I)/2 which arrive with intensity 2λ each. The
corresponding Poisson process is denoted ξλi . Since,

〈Φϑ|Kλi |Φϑ′〉 = δ{ϑ=ϑ′}δ{ϑi=1},

an arrival of ξλi at time t imposes the constraint ϑ(i, t) = 1 for every
ξ-compatible classical piece-wise constant x-trajectory ϑ : [0, β] �→
ΩΛ. We shall refer to ξλ as to processes of marks.

Accordingly, for a given realization of ξ compatible periodic piece-wise
constant trajectories ϑ(·) are characterized as follows:

1. Arrivals of ξij and of ξhi enforce simultaneous flips of i-th and j-th
coordinates of ϑ, respectively of i-th coordinate of ϑ. These are the
only jumps of ϑ(·).

2. For each i ∈ Λ, ϑ(i, t) = 1 at all arrival times of ξλi .

Let us try to compute the number of ξ-compatible trajectories ϑ for a
given realization ξ. It is natural to modify the notion of the boundary
∂ξ as follows: For every i ∈ Λ the process of marks ξλi splits the circle
S
i
β into the disjoint union of intervals,

S
i
β \ ξλi = ∪m(i)

l=1 J
(i)
l

Δ= ∪m(i)
l=1 il × I

(i)
l . (3.12)

The number m(i) of such disjoint intervals equals to 1 if ξλi = 0 and
to ξλi otherwise. Let us say that an interval J (i)

l in the decomposition
(3.12) belongs to the boundary ∂ξ if (see Figure 4) the total current
through J (i)

l

ξ[J (i)
l ] Δ=

∑

j∈Λ\i
ξij(J

(i)
l ) + ξhi (J

(i)
l ),

is odd. Evidently, there are periodic compatible ϑ ∼ ξ iff ∂ξ = ∅. In
the later case, there is a unique compatible trajectory ν(i, ·) for every
marked i ∈ Λ such that ξλi > 0 and, accordingly, there are precisely
two compatible trajectories for every unmarked i with ξλi = 0. Let
#m (ξ) = #

{
i : ξλi = 0

}
be the total number of unmarked intervals

[0, β]. By the general trace formula (2.26),
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t1

t2

t3

J1
(i)

J2
(i)

J3
(i)

∪ ( Λ \ i )

Fig. 4. The arrival times of the process of marks ξλi are t1, t2 and t3.
Accordingly, S

i
β is split into three marked intervals J (i)

1 , J
(i)
2 and J (i)

3 . The

total number of arrivals of flips on J (i)
3 equals to three, hence J (i)

3 ⊆ ∂ξ.

Tr
(
e−βHΛ

)

eβ(
∑

(i,j) Jij+
∑

i h+
∑

i λ)
= P

J,h,λ
β

(
2#m(ξ) ; ∂ξ = ∅

)
. (3.13)

Thus, contrary to what happened in the the classical case, one should
modify the reference (Poisson ) measure. Define,

P̃
J,λ,h
β,Λ (dξ) =

2#m(ξ)
P

J,λ,h
β,Λ (dξ)

P
J,λ,h
β,Λ

(
2#m(ξ)

) .

Then, as in the classical case, the following random current represen-
tation of one and two point functions hold: Let J(i, t) be the marked
interval containing (i, t). Then,

Tr
(
σ̂z
i e
−βHΛ

)

Tr (e−βHΛ)
=

P̃
J,λ,h
β,Λ (∂ξ = J(i, 0) ∪ g)

P̃
J,λ,h
β,Λ (∂ξ = ∅)

(3.14)

and, similarly,

Tr
(
σ̂z
i σ̂

z
je
−βHΛ

)

Tr (e−βHΛ)
=

P̃
J,h,λ
β,Λ (∂ξ = J(i, 0) ∪ J(j, 0))

P̃
J,h,λ
β,Λ (∂ξ = ∅)

(3.15)

It is, of course, a very natural question what should be a correct analog
of the switching lemma in the quantum case. A closed form answer is
still missing, but some aspects of this issue are discussed in [9].1

1 Appropriate versions of switching lemma were recently derived by Crawford and
Ioffe [10] and by Björnberg and Grimmett [5].
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Ground States, Matrix and Reduced Density Matrix Elements Let us
briefly sketch how matrix and reduced density matrix elements in the
x-basis could be written using the RC representation. Again, in order
to simplify the notation we shall consider only the case of h = 0, and,
exactly as in the end of Subsection 3.1, we shall directly pass to the
ground state limit β → ∞. In the ground state we are dealing with
processes of arrivals ξ on the whole real line R. We use P

J,λ
∞,Λ to denote

the corresponding product measure. Evidently, ξλi �= ∅ ∀i P
J,λ
∞,Λ-a.s. In

other words, for each i ∈ Λ the copy of the real line associated with i
contains marks. As in the FK case, given ξ and a subset A ⊆ Λ, we
use ξA to denote the slit configuration: except that now we view ξA as
ξ with additional marks placed at time zero for each i ∈ A.

With such notation in mind we classify all marked intervals of ξλ

and ξλA as follows:

1. Marked interval i× I of ξλ belong to M0(ξλ) if 0 ∈ I. Otherwise it
belongs to Mext(ξλ).

2. Marked intervals of the type i × (0, t) of ξA belong to M+
0 (ξA).

Similarly, marked intervals of the type i × (−t, 0) of ξA belong to
M−

0 (ξλA).
3. All other marked intervals are ξA are also marked intervals of ξ and

we classify them as M0(ξλA) and Mext(ξλA).

Accordingly, we define the boundaries ∂0ξ, ∂extξ, ∂+
0 ξA, ∂−0 ξA, ∂0ξA

and ∂extξA as e.g.,

∂0ξ =
{
i× I ∈M0(ξλ) : ξ[i× I] is odd

}
.

Let us introduce the following conditional measure

M
J,λ
∞,Λ = P

J,λ
∞,Λ (·|∂extξ = ∅) .

Since Λ is finite the above definition can be easily turned into a mean-
ingful one via an appropriate limiting procedure.

Let ϑ, ϑ′ ∈ {±1}Λ be two classical x-configurations, and let
ρx
∞ (ϑ, ϑ′) be the corresponding matrix element. From our interpre-

tation of a mark in terms of a +1-spin enforcement at the correspond-
ing space-time arrival point, it is apparent that that ξ contributes to
ρx
∞ (ϑ, ϑ′) iff the following event E±(ϑ, ϑ′) = E+(ϑ) ∩ E−(ϑ′) occurs:

1. Event E+(ϑ): For every i× I ∈M+
0 (ξλΛ), i× I ∈ ∂+

0 ξA iff ϑi is −1.
2. Event E−(ϑ′): For every i× I ∈M−

0 (ξλΛ), i× I ∈ ∂−0 ξA iff ϑ′i is −1.
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Then,

ρx
∞

(
ϑ, ϑ′

)
=

M
J,λ
∞,Λ (E±(ϑ, ϑ′))

M
J
∞,Λ, λ (∂0ξ = ∅)

.

In a similar fashion for A ⊆ Λ and two classical x-configurations θ, θ′ ∈
{±1}A define the event EA±(θ, θ′) exactly as above, except that even/odd
conditions on currents are restricted to intervals i × I from M±

0 (ξλA).
Then, the (θ, θ′) entry of the reduced density matrix is given by,

ρx
∞,A

(
θ, θ′

)
=

M
J,λ
∞,Λ

(
EA±(θ, θ′); ∂0ξA = ∅

)

M
J,λ
∞,Λ (∂0ξ = ∅)

.

4 Curie-Weiss Model and Erdős-Rényi Random Graphs

Classical Curie-Weiss mean-field Hamiltonian HCW
N is a function on

ΩN = {±1}N ,

−HCW
N (ν) =

1
N

∑

(i,j)

νiνj , (4.1)

where, as before, the summation is over all unordered pairs of i �= j.
In the language of Subsection 2.1,

{
HCW
N (ν)

}
are eigenvalues of the

quantum Hamiltonian HCW
N ,

HCW
N Ψν = HCW

N (ν)Ψν , where −HCW
N =

1
N

∑

(i,j)

σ̂z
i σ̂

z
j .

Accordingly, for a given value of the inverse temperature β, the distri-
bution of ν is,

μβN (ν) =
1
ZN

e−βH
CW
N (ν) =

〈Ψν |e−βH
CW
N (ν)|Ψν〉

Tr
(
e−βH

CW
N (ν)

) . (4.2)

One way to pin down phase transition in the CW model is to study
statistical properties of the mean magnetization

ν̄N
Δ=

1
N

∑

i

νi,

under μβN . As it is well known, for β ≤ 1, the distribution of ν̄N is
sharply concentrated around ±m∗, where the spontaneous magnetiza-
tion m∗ = m∗(β) equals to zero for β ≤ 1 and is positive (and hence
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there are coexisting ±phases) for β > 1. This could be verified in two
different ways, which correspond to two equality signs in (4.2): either
directly through large deviation computations for Bernoulli random
variables, or using the geometric FK representation as described in Sub-
section 2.3. In the latter case phase transition in the CW model is re-
lated to emergence of the giant component in the classical Erdős-Rényi
random graph. Both methods are briefly recalled in Subsection 4.1

The main objective of this Section, however, is to explain that a
very similar story happens with the quantum CW model in transverse
field,

−HCW
N =

1
N

∑

(i,j)

σ̂z
i σ̂

z
j + λ

∑

i

σ̂x
i .

In particular, there is a natural inclusion of (one parameter) Erdős-
Rényi random graph models into a two-parameter family of space-time
random graphs. In this way classical Erdős-Rényi critical point β = 1 is
just the limiting point on the whole critical curve in the (β, λ) plane. It
is somewhat amusing that, apparently, such quantum version of Erdős-
Rényi random graphs was overlooked for a long time, and the corre-
sponding critical curve was originally computed only in [15].

Contrary to what happens in the classical case, however, for the
moment it is not clear how recover the critical curve for the quantum
CW model in the transverse field from the critical curve for the quan-
tum Erdős-Rényi random graph, although a conjecture has appeared
in [14]. In principle, the quantum CW critical curve could be derived
from the results of [17], where limiting states were classified for essen-
tially all mean field type models. Alternatively, one can use infinite
dimensional theory of large deviations, see [11] and references therein.
In the concluding Subsection 4.3 we shall briefly report on recent re-
sults of [9]. As in [11] the approach relies on a partial Trotterization
of the mean-field Hamiltonian under, however, a different choice of ar-
rival operators associated to transversal field: Ours corresponds to the
FK setup of Subsection 3.1. Such FK point of view leads to certain
advantages and, as a result, we go beyond just computing the critical
curve itself. In particular, we are able to derive sharp asymptotics of
the spontaneous magnetization m∗(β, λ) in the vicinity of the critical
curve, and for (β, λ) away from the critical curve we are able to derive
quadratic stability bounds for maximizers of the corresponding infinite
dimensional mean-field variational problem.
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4.1 Classical Case

The probability measure νβN in (4.2) could be described in the following
way: Let Q be the uniform (1/2) distribution on {±1} and let ⊗Q be
the corresponding product measure on ΩN = {±1}N . Then,

μβN (ν) =
⊗Q

(
eNβ(ν̄N )2/2; ν

)

⊗Q
(
eNβ(ν̄N )2/2

) . (4.3)

Then, elementary one-dimensional theory of large deviations implies
that μβN exponentially concentrates around

{
ν : ν̄N is close to argmax

(β
2
m2 − I(m)

)}
,

where I is the large deviation rate function for ν̄N under ⊗Q,

I(m) = sup
h
{hm− Λ(h)} and Λ(h) = log Q

(
ehν

)
= log

eh + e−h

2
.

It is easy to see that I is strictly convex and differentiable on (−1, 1)
with I ′(m) → ±∞ asm→ ±1. In particular, the supremum of βm2/2−
I(m) is actually attained inside (−1, 1) for any β ∈ R+. Furthermore,
since I(·)/β is the convex conjugate of Λ(β·)/β,

argmax
{
m2

2
− 1
β
I(m)

}
= argmax

{
1
β
Λ(βh)− h

2

2

}
. (4.4)

But Λ(β·) is the log-moment generating function of the ±β Bernoulli
random variable. If we use Qβ for the corresponding distribution, then
it is straightforward to check that the maximizers in (4.4) are of the
form ±m∗(β), where m∗(β) > 0 iff,

1 <
1
β

Var (β) (ν) =
β2

β
, (4.5)

and we, thereby, recover the critical value β = 1 of the classical CW
model.

Relation to Random Graphs. Let us go back to the definition of the
classical FK measure in (2.31), and let us use the shorthand notation
P̃β,N for the CW case at zero magnetic field, J ≡ 1/N and h = 0. By

the second equality in (4.2), the distribution μβN can be constructed
from P̃β,N as follows:
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First sample arrival processes ξ = {ξij} from P̃β,N . Two sites i and
j (or, equivalently, two circles S

i
β and S

j
β) are said to be connected in

ξ if ξij �= ∅. Thus, any realization of ξ splits {1, . . . , N} into maximal
connected components. At the second step paint those connected com-
ponents into ±1 independently and with probability 1/2 each. In fact
we have just constructed a joint measure Mβ,N (dξ, ν) with marginals
P̃β,N and μβN .

In view of such two-step construction of μβN , the critical point β = 1
and the value of the spontaneous magnetization m∗(β) could be re-
covered now from the following facts about the FK measures P̃β,N on
complete graph: With P̃β,N -probabilities tending to 1, as N tends to∞,

1. For β < 1 all connected components of ξ have sizes O(logN) at
most.

2. For β > 1, there is exactly one giant connected component of size
∼ m∗(β)N , whereas the remaining connected components of ξ have
sizes O(logN) at most.

Above statements are similar to classical results on the emergence of
giant component in random complete graphs. Indeed, by construction,

P̃β,N (dξ) =
2#(ξ)

Pβ,N (dξ)

Pβ,N

(
2#(ξ)

) , (4.6)

where #(ξ) is the number of connected components of ξ (recall that
since we take h = 0 there are no wired components as in the general for-
mula (2.31)). We can think about Pβ,N in terms of Erdős-Rényi random
graph on {1, . . . , N} where bonds between different sites i, j are placed
independently and with probability 2β/N each. Indeed, 1− e−2β/N is
the probability that ξij �= ∅. Furthermore, as it was observed by Ed-
wards and Sokal [13], the conditional ξ-marginal of

Mβ,N (·|ν1 = 1, . . . , νM = 1, νM+1 = −1, . . . , νN = −1)

is exactly Pβ,M ⊗Pβ,N−M . Since max {M,N −M} ≥ N/2, the inequal-
ity βc ≤ 1 for the critical FK value of β is immediately implied by
classical Erdős-Rényi results, see e.g. [6]: Let {1, . . . ,K} be the com-
plete graph of K sites. Assume that an (un-oriented) edge (i, j) is open
with probability ε/K independently from all other edges. Then εc = 1
is the threshold for the emergence of the giant component. Moreover,



Stochastic Geometry of Ising Models 115

in the case of ε > 1 the density ρ(ε) of the giant component is asymp-
totically close to the positive solution of

1 − ρ = e−ερ. (4.7)

In over case, K = max {M,N −M} ≥ N/2, and hence 2β/N > 1/K
whenever β > 1.

The reverse inequality βc ≥ 1 is not much harder: Assume that
β < 1. Without loss of generality we can consider only the case when
the total number of + spins M ≤ N/2. Then, under Pβ,M all the con-
nected components of {1, . . . ,M} are small. A-priori, a giant connected
component still could appear under Pβ,N−M . Let ρ be the density of
this component. Then (1 − ρ)(N −M) of the remaining − spins live
on small components of sizes O(logN) at most. Since in the origi-
nal coupled measure Mβ,N all the small connected components were
coloured independently, we infer thatM ∼ (1−ρ)(N−M). Accordingly,
K
Δ= N −M ∼ N/(2− ρ) and hence 2β/N ∼ ε/K with ε = 2β/(2− ρ).

Thus, by (4.7), the relative density ρ should satisfy

1 − ρ = e−2βρ/(2−ρ).

But the latter equation does not have a positive solution. Indeed, set
θ = ρ/(2− ρ) or ρ = (1− θ)/(1 + θ). Then θ is positive as soon as ρ is
positive, and

1− θ
1 + θ

= e−2βθ

Taking logs and expanding,

2θ +
2
3
θ3 + . . . = 2βθ,

which is impossible unless θ = or β > 1.
A general class of FK models on complete graphs is examined in [7].

4.2 Curie-Weiss Model in Transverse Field and Quantum
Random Graphs

Quantum Curie-Weiss Hamiltonian in transverse field λ ≥ 0 is given by,

−HCW
N =

1
N

∑

(i,j)

σ̂z
i σ̂

z
j + λ

∑

i

σ̂x
i .

Following the approach of Subsection 3.1 we associate to HCW
N the

following family ξ of independent Poisson processes of arrivals on the
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circle Sβ : For each un-oriented couple (i, j) operators
(
I + σ̂z

i σ̂
z
j

)
arrive

with intensity 2/N , whereas operators (I + σ̂x
i ) arrive with intensity λ

for every i = 1, . . . , N . Connected components of {1, . . . , N} × Sβ in-
duced by ξ are defined precisely as in Subsection 3.1. Recall that each
such connected component C is represented as a union,

C =
⋃

l

{il × Il} ,

of disjoint space-time intervals. The size of C could be measured in
several ways: For example we can compute number of different spatial
coordinates (out of {1, . . . , N}) which contribute to C. The most natural
definition of the size, however, is

|C| =
∑

l

|Il|, (4.8)

that is the total length of all time intervals of C.
Since we consider the case of zero z-field, all connected components

of ξ are free. Consequently, the FK modification P̃
λ
β,N of the reference

product Poisson measure P
λ
β,N is given by

P̃
λ
β,N (dξ) =

2#(ξ)
P
λ
β,N (dξ)

P
λ
β,N

(
2#(ξ)

) , (4.9)

In view of (3.7) it is suggestive to try to study the question of phase
co-existence in terms of emergence of giant components under P̃

λ
β,N .

Note that in a genuine quantum case of λ > 0, this is a non-trivial
question even in the ground state limit when β → ∞. In fact, instead
of one critical value of β one should face here a whole critical curve in
the (λ, β) positive quarter plane. For the moment we do not know how
to derive this curve via direct analysis of random space-time graphs
induced by the family of quantum FK measures (4.9). This, however,
is a meaningful question even for the reference family of measures P

λ
β,N .

Quantum Random Graphs As it is apparent from a comparison between
(4.9) and (4.6) the measures P

λ
β,N play the same role for the quantum

Curie-Weiss model in transverse field as Erdős-Rényi random graphs
Pβ,N play for the classical CW model. Accordingly, we shall refer to the
collection of independent Poisson processes of holes and links induced
by P

λ
β,N as to quantum random graphs. In order to be compatible with

the usual random graph notation let us modify the arrival rates un-
der P

λ
β,N in the following way: The holes still arrive with intensity λ,
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¯

¸

¸c= 2

¯c= 1

ALRO

ASRO

(¯;¸ ) = 1

Fig. 5. Decomposition of the (β, λ) quarter plane into the short range and
long range regions.

however the links between an unordered pair of sites i �= j arrive now
with intensity 1/N . In this way βc = 1 is the classical critical value
which corresponds to λ = 0. The main result of [15] asserts that the
full critical curve for the family of quantum random graphs is implicitly
given by,

F(β, λ) Δ=
2
λ

(
1− e−λβ

)
− βe−λβ = 1. (4.10)

The curve is depicted on Figure 5. Note that the classical critical value
βc = 1 is just the end-point of the curve on β-axis. Notice also that
the critical value of λ in the ground state model β = ∞ equals to
λc = 2. Let us be more specific about the nature of phase transition for
quantum random graphs: The critical curve (4.10) splits the positive
quarter-plane into

ALRO
Δ= {(β, λ) : F(β, λ) > 1} and ASRO

Δ= {(β, λ) : F(β, λ) < 1} ,

where LRO (respectively SRO) stands for long (respectively short)
range order. Here is a justification for such a terminology: By defi-
nition, two points (i, t), (j, s) are connected in ξ, if the intervals con-
taining these points belong to the same connected component C in the
ξ-induced decomposition of {1, . . . , N}×Sβ . We shall denote the latter
event as {(i, t)←→ (j, s)}. Then,

1. If (β, λ) ∈ ASRO, then

P
λ
β,N ((i, t) ←→ (j, s)) = O

( logN
N

)
(4.11)

uniformly in t, s ∈ Sβ and i �= j.
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2. On the other hand, if β < ∞ and (β, λ) ∈ ALRO, then there exists
ρ = ρ(β, λ) ∈ (0, 1), such that

P
λ
β,N ((i, t) ←→ (j, s)) = ρ(β, λ)2 (1 + o(1)) , (4.12)

also uniformly in t, s ∈ Sβ and i �= j.
As in the classical Erdős-Rényi case the short/long range order transi-
tion for β <∞ is related to an emergence of a unique giant connected
component. In fact, the number ρ(β, λ) in (4.12) is precisely the limit-
ing space-time density of the latter. More precisely, let us use (4.8) to
measure sizes of random connected components of {1, . . . , N}×Sβ . Let
M and Mnext be the largest and the next to the largest sizes of these
connected components (of course, these definitions make sense only for
β <∞). Then,

1. If (β, λ) ∈ ASRO, then for every κ > 0 there exists c = c(β, λ, κ) <
∞, such that

P
λ
β,N

(∣∣C ((i, t))
∣∣ > c logN

)
= o

( 1
Nκ

)
, (4.13)

where C((i, t)) is the connected component containing (i, t). Clearly,
the distribution of

∣∣C ((i, t))
∣∣ is the same for all i ∈ {1, . . . , N} and

t ∈ Sβ (by definition S∞ = R). Furthermore, if β <∞, then

P
λ
β,N (M > c logN) = o

( 1
Nκ−1

)
(4.14)

2. If, however, β <∞ and (β, λ) ∈ ALRO then there exists a sequence
of positive numbers εN (β, λ) → 0 such that,

P
λ
β,N

(∣∣∣∣
|C((i, t))|
Nβ

− ρ
∣∣∣∣ < εN

)
= ρ(β, λ)(1− o(1)), (4.15)

where ρ(β, λ) is the same probability as in (4.12). Furthermore, in
the β <∞ case, there exists a constant c = c(β, λ) <∞ such that

P
λ
β,N (E(ρ, εN , c)) = 1− o(1), (4.16)

where the event E(ρ, εN , c) is defined via

E(ρ, εN , c) =
{∣∣∣∣
M
βN

− ρ
∣∣∣∣ < εN

}
∩
{
Mnext < c logN

}
. (4.17)
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The original proof of the above results appeared in [15]. Afterwards, the
statements related to the β < ∞ case were re-proven using somewhat
different methods in [16].

We finish this Subsection by indicating how the expression (4.10)
comes into play. As in the classical case one couples a construction of
a single connected component with a Galton-Watson process. In the
quantum case descendant of a point (i, t) ∈ {1, . . . , N} are generated
in the following fashion:

1. First generate a random interval I ⊆ Sβ around (i, t),so that the
end-points of I would imitate two successive holes. Since the holes
arrive with intensity λ the length |I| should be distributed as
min {Γ (2, λ), β}.

2. Given a realization of I ) t, the number of all links to i which ar-
rive during I is distributed Poisson(N−1

N |I|). In the Galton-Watson
approximation we take it to be exactly Poisson(|I|).

Accordingly, if we denote the number of descendants in the Galton-
Watson approximation by X, then E(X|I) = |I|. Let V ∼ Γ (2, λ)
Then,

E (|I|) = E (V ;V < β) + βP (V ≥ β) ,

Now,

P (V ≥ β) =
∫ ∞

β
λ2te−λtdt = (λβ + 1)e−λβ.

In the same fashion,

E (V ;V ≤ β) =
2
λ

(
1− e−λβ

)
−

(
β2λ+ 2β

)
e−λβ.

Consequently,

E (|I|) =
2
λ

(
1− e−λβ

)
− βe−λβ,

which is precisely the expression in (4.10).

4.3 Critical Curve for Quantum Curie-Weiss Model
via Large Deviations

Large deviation representation of the CW model in transverse field is
obtained via partial linearization in the Lie-Trotter product formula
(or partial Poissonization of the CW Hamiltonian). Namely,

e−βH
CW
N

eλN
= lim
Δ→0

(
∏

(i,j)

e
Δ
N
σ̂z

iσ̂
z
j

∏

i

{(1−Δλ)I +Δλ(σ̂x
i + I)}

)β/Δ
. (4.18)
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Note that matrices e
Δ
N
σ̂z

iσ̂
z
j are diagonal in the z-basis,

〈Ψν |e
Δ
N
σ̂z

iσ̂
z
j |Ψν′〉 = e

Δ
N
νiνj . (4.19)

Let P
λ
β be the distribution of the Poisson point process (of holes) on

the circle Sβ with arrival intensity λ. We shall use ⊗P
λ
β for the product

distribution of N independent copies ξ = (ξ1, . . . , ξN ). Given a real-
ization of ξ let us say that a classical piece-wise constant trajectory
ν : S

β �→ {±1}N is compatible with ξ; ν ∼ ξ, if for every i = 1, . . . , N
jumps of νi(·) occur only at arrival times of ξi. Passing to the limit in
(4.18) we, in view of (4.19), infer

Tr
(
e−βH

CW
N

)

eλN
=

∫
⊗P

λ
β(dξ)

∑

ν∼ξ
exp

{∫ β

0

1
N

∑

(i,j)

νi(t)νj(t)dt
}
. (4.20)

For every i let #(ξi) be the number of connected components of Sβ \ξi.
Evidently, the number of all compatible ν ∼ ξ equals to 2

∑
i #(ξi). Define

P̃
λ
β (dξ) =

2#(ξ)
P
λ
β (dξ)

P
λ
β

(
2#(ξ)

)

This is just the one-circle FK measure. Consider probability distri-
bution Q

λ
β on piece-wise constant classical one-circle spin trajectories

ν : Sβ �→ {±1} which is generated by the following two step procedure:
First sample ξ from P̃

λ
β , and then paint connected components of Sβ \ ξ

into ±1, independently and with probability 1/2 each. Let ⊗Q
λ
β be the

corresponding product measure. It is straightforward to check that the
righthand side of (4.20) equals to

[
P̃
λ
β

(
e#(ξ)

)]N
⊗Q

λ
β

(
exp

{∫ β

0

1
N

∑

(i,j)

νi(t)νj(t)dt
})
.

Consequently, an analysis of phase diagram of the CW model in trans-
verse filed boils down to an investigation of asymptotic properties for
weighted measures

⊗Q̃
λ
β(dν)

Δ=
⊗Q

λ
β

(
exp

{
N
2

∫ β
0 (ν̄N (t))2 dt

}
; dν

)

⊗Q
λ
β

(
exp

{
N
2

∫ β
0 (ν̄N (t))2 dt

}) , (4.21)
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where,
ν̄N (t) =

1
N

∑

i

νi(t).

This problem belongs to the realm of theory of large deviations. For-
mally, the measures (4.21) are asymptotically concentrated around so-
lutions of

sup
m

{1
2

∫ β

0
m2(t)dt − I(m)

}
Δ= sup

m
G(m), (4.22)

where I is the large deviation rate function for the average ν̄N under the
product measures ⊗Q

λ
β . If we formulate the large deviation principle in

L2(Sβ), then, using (·, ·)β for the corresponding scalar product,

I(m) = sup
h
{(h,m)β − Λ(h)} where Λ(h) = log Q

λ
β

(
e(h,ν)β

)
.

(4.23)
A detailed analysis of the variational problem (4.22) and of the weighted
measures Q̃

λ
β,N will appear in the forthcoming [9]. Here we shall try to

give a brief sketch of the results and techniques, in particular, we shall
explain how the critical curve of the CW model in the transverse field
could be read from (4.22).

The critical curve is implicitly given by

f(λ, β) Δ=
1
β

Varλ (β) ((ν, 1I)β) =
1
λ

tanh(λβ) = 1, (4.24)

where Varλ (β) is the variance under the one-circle spin measure Q
λ
β . As

we show in [9], the variational problem (4.22) has constant maximizers
±m∗(λ, β), where the spontaneous z-magnetization m∗ satisfies:

1. If f(λ, β) ≤ 1, then m∗ = 0.
2. If f(λ, β) > 1, thenm∗ > 0, and, consequently there are two distinct

solutions to (4.22).

Furthermore, away from the critical curve the solutions ±m∗1I are sta-
ble in the following sense: There exists c = c(λ, β) > 0 and a strictly
convex symmetric function U with U(r) ∼ r log r growth at infinity
such that

G(±m∗1I)−G(m) ≥ cmin
{
‖m−m∗1I‖2β , ‖m+m∗1I‖2β

}
+
∫ β

0
U(m′(t))dt.

(4.25)
The second term above is important in the super-critical regime
(f(λ, β) > 1) since it rules out trajectories of ν̄N (·) with rapid transi-
tions between the optimal values ±m∗.
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Properties of One-circle Spin Measures

The following properties of Q
λ
β are crucial for the analysis of (4.22):

1. Q
λ
β possesses the FKG property.

2. Q
λ
β satisfies the following qualitative version of the GHS inequality:

Given h ∈ R+ define the tilted measure

Q
λ,h
β (dν) =

Q
λ
β

(
eh(ν,1I)β ; dν

)

Q
λ
β

(
eh(ν,1I)β

) .

Then, there exists c1 = c1(λ, β) > 0, such that

d
dh

Varλ,h (β) ((ν, 1I)β) ≤ −c1he−2βh. (4.26)

3. Q
λ
β is reflection positive: Let n ∈ N, 0 < t1 < · · · < tn < β/2 and

let f : {±1}n → C. Set sk = β − tk. Then,

Q
λ
β

(
f(νt1 , . . . , νtn)f̄(νs1 , . . . , νsn)

)
≥ 0. (4.27)

Properties 1. and 3. are more or less immediate since Q
λ
β could be

viewed in terms of an approximation by ferromagnetic nearest neigh-
bour one-dimensional Ising models. Namely, let us approximate ξ by
Bernoulli point process of arrivals ξΔ, exactly as in (2.21). Modify
Bernoulli weights by 2#(ξΔ) and paint connected components of S \ ξΔ
into ±1, independently and with probability 1/2 each. Then, the re-
sulting measure Q

λ
β,Δ approximates Q

λ
β . Of course Q

λ
β,Δ charges only

trajectories ν which jump at times jΔ. For such trajectories,

Q
λ
β,Δ(ν) ∼

β/Δ−1∏

i=0

(
δ{ν(iΔ)=ν((i+1)Δ)} +Δλδ{ν(iΔ)=ν(i+1)Δ}

)
.

Set J = J(Δ,λ) = − log
√
Δλ. Since

δ{ν(iΔ)=ν((i+1)Δ)} +Δλδ{ν(iΔ)=ν((i+1)Δ)} =
eJν(iΔ)ν((i+1)Δ)

eJ
,

we recognize Q
λ
β,Δ as a scaling of the nearest neighbour Ising model on

discrete circle Sβ/Δ at unit temperature and with interaction strength
J(Δ,λ).

Inequality (4.26) is proved in [9] using the same approximation (by
1D Ising models) with an additional care being paid to limits of random
current representation of third semi-invariants (based on [2]).
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Dual Variational Problem

In order to explain the implications of the properties of Q
λ
β listed

above, it is convenient to consider the dual variational problem,

sup
h

{
Λ(h) − 1

2

∫ β

0
h2(t)dt

}
Δ= sup

h
G∗(h). (4.28)

Any solution h̃ of (4.28) is also a solution to (4.22). This is a general fact
from convex analysis: Let F and G be two proper lower-semicontinuous
convex functionals (on say L2(Sβ)) and let F ∗ and G∗ be their convex
conjugates. Assume that

F ∗(h̃)−G∗(h̃) = max
h
{F ∗(h)−G∗(h)} ,

and assume that both F ∗ and G∗ are Gateaux differentiable (in fact
sub-differentiability would be enough) at h̃. Let m̃ = ∇F ∗(h̃) =
∇G∗(h̃). Then,

F ∗(h̃)−G∗(h̃) = G(m̃)− F (m̃).

Consequently, for each couple of functions m and h,

{(m,h)β −G∗(h)} − {(m,h)β − F ∗(h)} ≤ G(m̃)− F (m̃).

It follows that for everym, G(m)−F (m) ≤ G(m̃)−F (m̃). Furthermore,
assume that we can quantify stability property of the dual variational
problem in the following way: There exists a non-negative functional
D, such that D = 0 only on the solutions of the dual problem, and for
any function h,

F ∗(h)−G∗(h) +D(h) ≤ F ∗(h̃)−G∗(h̃). (4.29)

Then such stability bound is transferable to the direct problem: Assume
that h = ∇G(m). Then,

G(m)− F (m) +D(h) + {F (m) + F ∗(h)− (m,h)β} ≤ G(m̃)− F (m̃).
(4.30)

In particular, G(m)− F (m) < G(m̃)− F (m̃), whenever ∇G(m) is not
a solution of the dual problem or whenever h �∈ ∂F (m).

Let us now go back to (4.22) and (4.28). In the above notation:
F (m) = I(m) and G(m) = ‖m‖2β/2. Accordingly, F ∗(h) = Λ(h) and
G∗(h) = ‖h‖2β/2. In particular, G,G∗ and F ∗ are everywhere Gateaux
differentiable. Of course, ∇G(m) = m. Consequently, once we derive a
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stability bound of the type (4.29) for the dual problem, we immediately
recover a stability bound

1
2

∫ β

0
m2(t)dt− I(m) +D(m) +

{
I(m) + Λ(m)− ‖m‖2β

}
≤ G(m̃)

(4.31)
for the original problem (4.22). In particular, any solution of (4.22) is
a solution of (4.28).

We, therefore, proceed to study the dual variational problem (4.28).

Reduction to a One-dimensional Problem

Reflection positivity property (4.27) implies that for any h ∈ L2(Sβ),

Λ(h) ≤ 1
β

∫ β

0
Λ (h(t)1I) dt. (4.32)

Note that (4.32) has been originally proved in a somewhat more general
context in [11]. As a result,

G∗(h) ≤
∫ β

0

{ 1
β
Λ (h(t)1I)− 1

2
h2(t)

}
dt ≤ β sup

h∈R

{ 1
β
Λ (h1I)− 1

2
h2

}
.

We claim that the maximizers of the one-dimensional variational
problem

max
h∈R

{ 1
β
Λ (h1I)− 1

2
h2

}
, (4.33)

are of the form ±h∗, where h∗ > 0 if and only if f(λ, β) > 1.

The critical curve (4.24). Compute,

d
dh

{ 1
β
Λ(h1I)− 1

2
h2

}
=

1
β

Q
λ,h
β ((ν, 1)β)− h.

The latter expression is evidently negative for h large enough, hence
the maximum in (4.33) is attained at a critical point. Furthermore,

d
dh

Q
λ,h
β ((ν, 1)β) = Varλ (β) ((ν, 1)β) .

Since by symmetry at h = 0 the expectation Q
λ
β ((ν, 1)β) = 0, and since

by (4.26) the function h → Q
λ,h
β ((ν, 1)β) is strictly concave on [0,∞),

we infer that:
Either Varλ (β) ((ν, 1)β) ≤ β, and then h = 0 is the only critical

point of the function in (4.33). Or, Varλ (β) ((ν, 1)β) > β, and then
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there are exactly three critical points; 0 and ±h∗, the latter inevitably
being the global maxima.

Stability of the one-dimensional problem. We claim, furthermore, that
whenever (λ, β) is away from the critical curve, the problem (4.33) is
stable,

{ 1
β
Λ (h1I)− 1

2
h2

}
+ d(h) ≤ 1

β
Λ (±h∗1I)− 1

2
(h∗)2, (4.34)

where d satisfies the following bound: There exists c1 = c1(λ, β) > 0,
such that,

d(h) ≥ c2e−2β|h| min
{
(h− h∗)2, (h+ h∗)2

}
. (4.35)

Proof of (4.34). Follows from (4.26).

Stability of the original variational problem. It follows that the dual
variational problem (4.28) (recall that in our case F ∗(·) = Λ(·) and
G∗(·) = 1/2‖ · ‖2β) satisfies (4.29) with

D(h) =
1
β

∫ β

0
d(h(t))dt.

Of course, the bound (4.34) could be improved for large values of |h|,
however since we are primarily interested in transferring stability to the
direct variational problem (4.22), the values of |h| > 1 are, in view of
(4.31), irrelevant. In particular D(m) clearly dominates (with h∗ = m∗

and c chosen appropriately small) the first term on the right hand side
of (4.25).

The second term
∫ β
0 U(m′(t))dt on the right hand side of (4.25)

is related to a more careful analysis of
{
I(m) + Λ(m)− ‖m‖2β

}
term

in (4.31), which is unfortunately beyond the scope of these lectures.
We, therefore, refer the reader to [9].

Behaviour Near the Critical Curve

The GHS-type bound (4.26) implies that the 4-th semi-invariant

−s4(λ, β) Δ=
d4Λ(h1I)

dh4

∣∣∣
h=0
,

is locally uniformly negative. Let f(λ, β) > 1 and assume that (λ, β)
is close to the critical curve, in particular that h∗(λ, β) is small. Then,
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h∗(λ, β) =
1
β

∫ h∗

0
Varλ,τ (β) ((ν, 1I)) dτ

= h∗f(λ, β)− s4(λ, β)(h∗)3

6β
(1 + O(h∗)) . (4.36)

It follows that in the vicinity of the critical curve spontaneous magne-
tization m∗(λ, β) = h∗(λ, β) scales like

m∗(λ, β)√
6β(f(λ, β)− 1)/s4(λ, β)

= 1 + o(1).
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Summary. These notes are devoted to the statistical mechanics of directed
polymers interacting with one-dimensional spatial defects. We are interested
in particular in the situation where frozen disorder is present. These polymer
models undergo a localization/delocalization transition. There is a large (bio)-
physics literature on the subject since these systems describe, for instance, the
statistics of thermally created loops in DNA double strands and the interaction
between (1 + 1)-dimensional interfaces and disordered walls. In these cases
the transition corresponds, respectively, to the DNA denaturation transition
and to the wetting transition. More abstractly, one may see these models as
random and inhomogeneous perturbations of renewal processes.

The last few years have witnessed a great progress in the mathematical
understanding of the equilibrium properties of these systems. In particular,
many rigorous results about the location of the critical point, about critical
exponents and path properties of the polymer in the two thermodynamic
phases (localized and delocalized) are now available.

Here, we will focus on some aspects of this topic—in particular, on the non-
perturbative effects of disorder. The mathematical tools employed range from
renewal theory to large deviations and, interestingly, show tight connections
with techniques developed recently in the mathematical study of mean field
spin glasses.
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1 Introduction and Motivations

Consider a Markov chain {Sn}n∈N on some state space Ω, say, Ω = Z
d.

We can unfold S along the discrete time axis, i.e., we can consider
the sequence {(n, Sn)}n∈N and interpret it as the configuration of a
directed polymer in the space N×Ω. In the examples which motivate
our analysis, the discrete time is actually better interpreted as one of
the space coordinates. The “directed” character of this polymer just
refers to the fact that the first coordinate, n, is always increasing. In
particular, the polymer can have no self-intersections. Some assump-
tions on the law of the Markov chain will be made in Section 2, where
the model is defined precisely. Now let 0 be a specific point in Ω, and
assume that the polymer receives a reward ε (or a penalty, if ε < 0)
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whenever Sn = 0, i.e., whenever it touches the defect line N × {0}. In
other words, the probability of a configuration of {S1, S2, . . . , SN} is
modified by an exponential, Boltzmann-type factor

exp
(
ε
N∑

n=1

1{Sn=0}
)
.

It is clear that if ε > 0 contacts with the defect line are enhanced
with respect to the ε = 0 (or free) case, and that the opposite is true
for ε < 0. One can intuitively expect that the in the thermodynamic
limit N → ∞ a phase transition occurs: for ε > εc the polymer stays
close to the defect line essentially for every n, while for ε < εc it is re-
pelled by it and touches it only at a few places. This is indeed roughly
speaking what happens, and the transition is given the name of lo-
calization/delocalization transition. We warn the reader that it is not
true in general that the critical value is εc = 0: if the Markov chain is
transient, then εc > 0, i.e., a strictly positive reward is needed to pin
the polymer to the defect line (cf. Section 2.6).

A more interesting situation is that where the constant repul-
sion/attraction ε is replaced by a local, site-dependent repulsion/attrac-
tion εn. One can for instance consider the situation where εn varies
periodically in n, but we will rather concentrate on the case where
εn are independent and identically distributed (IID) random variables.
We will see that, again, the transition exists when, say, the average
ε of εn is varied. However, in this case the mechanism is much more
subtle. This is reflected for instance in the counter-intuitive fact that εc
may be negative: a globally repulsive defect line can attract the poly-
mer! Presence of disorder opens the way to a large number of exciting
questions, among which we will roughly speaking select the following
one: how are the critical point and the critical exponents influenced by
disorder?

There are several reasons to study disordered pinning models:

• there is a vast physics and bio-physics literature on the subject,
with intriguing (but often contradictory) theoretical predictions and
numerical/experimental observations. See also Section 2.6;

• they are interesting generalizations of classical renewal sequences.
From this point of view they raise new questions and challenges,
like the problem of the speed of convergence to equilibrium for the
renewal probability in absence of translation invariance (cf. in par-
ticular Section 6);
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• finally (and this is my main motivation) they are genuinely
quenched-disordered systems where randomness has deep, non-
perturbative effects. With respect to other systems like disordered
ferromagnets or spin glasses, moreover, disordered pinning models
have the advantage that their homogeneous counterparts are under
full mathematical control. These models, therefore, turn out to be
an ideal testing ground for theoretical physics arguments like the
Harris criterion and renormalization group analysis.

It is also quite encouraging, from the point of view of mathematical
physics, that rigorous methods have been able not only to confirm
predictions made by theoretical physicists, but in some cases also to
resolve controversies (it is the case for instance of the results in Section
5.6, which disprove some claims appeared previously in the physical
literature).

1.1 A Side Remark on Literature and on the Scope
of These Notes

A excellent recent introductory work on pinning models with quenched
disorder (among other topics) is the book [22] by Giambattista Gia-
comin. In order to avoid the risk of producing a résumé of it, we have
focussed on aspects which are not (or are only tangentially) touched in
[22]. On the other hand, we will say very little about “polymer path
properties”, to which Chapters 7 and 8 of [22] are devoted. A certain
degree of overlap is however inevitable, especially in the introductory
sections 2 and 4; results taken from [22] will be often stated without
proofs (unless they are essential in the logic of these notes).

We would also like to mention that some of the results of these
notes apply also to a model much related to disordered pinning, namely
random heteropolymers (or copolymers) at selective interfaces. It is the
case, for instance, of the results of Sections 5.6 and 6. We have chosen
to deal only with the pinning model for compactness of presentation,
but we invite readers interested in the heteropolymer problem to look,
for instance, at [11], [37], [22] and references therein.

2 The Model and its Free Energy

2.1 The Basic Renewal Process (“The Free Polymer”)

Our starting point will be a renewal τ on the integers, τ := {τi}i=0,1,2,...,
where τ0 = 0 and {τi − τi−1}i≥1 are IID positive and integer-valued
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random variables. The law of the renewal will be denoted by P, and
the corresponding expectation by E. In terms of the “directed polymer
picture” of the introduction, P is the law of the set τ of the points
where the polymer touches the defect line, in absence of interaction:
τ = {n : Sn = 0} (cf. also Section 2.6). We assume that (τi − τi−1) or,
equivalently, τ1 is P-almost surely finite: if

K(n) := P(τ1 = n), (2.1)

this amounts to requiring
∑
n∈N

K(n) = 1. This, of course, implies that
the renewal is recurrent: P-almost surely, τ contains infinitely many
points. A second assumption is that K(.) has a power-like tail. More
precisely, we require that

K(n) =
L(n)
n1+α

for every n ∈ N, (2.2)

for some α ≥ 0 and a slowly varying function L(.). We recall that a
function (0,∞) ) x → L(x) ∈ (0,∞) is said to be slowly varying at
infinity if [8]

lim
x→∞

L(rx)
L(x)

= 1 (2.3)

for every r > 0. In particular, a slowly varying function diverges or
vanishes at infinity slower than any power. The interested reader may
look at [8] for properties and many interesting applications of slow
variation. Of course, every positive function L(.) having a non-zero
limit at infinity is slowly varying. Less trivial examples are L(x) =
(log(1 + x))γ for γ ∈ R.

Observe that the normalization condition
∑
n∈N

K(n) = 1 implies
that, if α = 0, L(.) must tend to zero at infinity (cf. also Section 2.6
below for an example).

It is important to remark that typical configurations of τ are very
different according to whether α is larger or smaller than 1. Indeed the
average distance between two successive points,

E (τi − τi−1) =
∑

n∈N

nK(n), (2.4)

is finite for α > 1 and infinite for α < 1. In standard terminology, τ
is positively recurrent (i.e., τ occupies a finite fraction of N) for α > 1
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and null-recurrent for α < 1 (the density of τ in N is zero). This is a
simple consequence of the classical renewal theorem [6, Chap. I, Th.
2.2], which states that

lim
n→∞

P(n ∈ τ) =
1∑

n∈N
nK(n)

. (2.5)

The distinction α ≷ 1 plays an important role, especially in the behav-
ior of the homogeneous pinning model (cf. Section 4). Later on we will
see the emergence of an even more important threshold value: αc = 1/2.

Remark 2.1. For α = 1, the question whether the renewal is positively
or null recurrent is determined by the behavior at infinity of L(.): from
(2.5) we see that τ is finitely recurrent iff

∑
n L(n)/n <∞. For instance,

one has null recurrence if L(.) has a positive limit at infinity.

2.2 The Model in Presence of Interaction

Now we want to introduce an interaction which favors the occurrence of
a renewal at some points and inhibits it at others. To this purpose, let ω
(referred to as quenched randomness or random charges) be a sequence
{ωn}n∈N of IID random variables with law P. The basic assumption on
ωn, apart from the fact of being IID, is that Eω1 = 0 and Eω2

1 = 1.
These are rather conventions than assumptions, since by varying the
parameters β and h in Eq. (2.6) below one can effectively tune average
and variance of the charges. To be specific, in these notes we will con-
sider only two (important) examples: the Gaussian case ω1

d= N (0, 1)
and the bounded case, |ω1| ≤ C < ∞. Many results are expected (or
proven) to hold in wider generality and a few remarks in this direction
are scattered throughout the notes.

We are now ready to define the free energy of our model: given
h ∈ R, β ≥ 0 and N ∈ N let

FωN (β, h) :=
1
N

logZN,ω(β, h) :=
1
N

log E
(
e
∑N

n=1(βωn+h)δnδN

)
, (2.6)

where for notational simplicity we put δn := 1{n∈τ}, 1A being the
indicator function of a set A. The quenched average of the free energy,
or quenched free energy for short, is defined as

FN (β, h) := EFωN (β, h). (2.7)

Note that the factor δN in (2.6) corresponds to imposing the boundary
condition N ∈ τ (the boundary condition 0 ∈ τ at the left border is
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implicit in the law P). One could equivalently work with free boundary
conditions at N (i.e., replace δN by 1). The infinite-volume free energy
would not change, but some technical steps in the proofs of some results
would be (slightly) more involved.

We need also a notation for the Boltzmann-Gibbs average: given
a realization ω of the randomness and a system size N , for a P-
measurable function f(.) set

Eβ,hN,ω(f) :=
E

(
f(τ) e

∑N
n=1(βωn+h)δnδN

)

ZN,ω(β, h)
(2.8)

2.3 Existence and Non-negativity of the Free Energy

As usual in statistical mechanics, one is (mostly) interested in the ther-
modynamic limit (i.e., the limit N →∞). A classical question concerns
the existence of the thermodynamic limit of the free energy, and its de-
pendence on the realization of the randomness ω. In the context of the
models we are considering, the answer is well established:

Theorem 2.2. [22, Th. 4.1] If E|ω1| <∞, the limit

F (β, h) := lim
N→∞

1
N

logZN,ω(β, h) (2.9)

exists for every β ≥ 0, h ∈ R and it is P(dω)-almost surely independent
of ω.

Of course, the limit does depend in general on the law P of the
disorder.

Note that the only assumption on disorder, apart from the IID char-
acter of the charges, is finiteness of the first moment, so that existence
and self-averaging of the infinite-volume free energy holds in much
wider generality than in the cases of Gaussian or bounded disorder
we are considering here.

Some properties of the free energy come essentially for free: in par-
ticular, F (β, h) is convex in (β, h), non-decreasing in h, continuous
everywhere and differentiable almost everywhere as a consequence of
convexity. Another easy fact is that the sequence {N FN (β, h)}N∈N is
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super-additive: for every N,M ∈ N , one has (N +M)FN+M (β, h) ≥
NFN (β, h) +MFM (β, h). This is easily proven:

(N +M)FN+M (β, h) = E log E
(
e
∑N+M

n=1 (βωn+h)δnδN+M

)

≥ E log E
(
e
∑N

n=1(βωn+h)δnδNe
∑N+M

n=N+1(βωn+h)δnδN+M

)

= NFN (β, h) +MFM (β, h), (2.10)

where in the last step we used invariance of P with respect to left
shifts and the renewal property of P. It is a standard fact that super-
additivity implies

F (β, h) ≥ FN (β, h) for every N ∈ N. (2.11)

2.4 Contact Fraction and Critical Point

As we already mentioned, the interest in this class of models is mainly
due to the fact that they show a so-called localization-delocalization
transition. This is best understood in view of the elementary bound
F (β, h) ≥ 0. This positivity property is immediate to prove:

FN (β, h) ≥ 1
N

E log E
(
e
∑N

n=1(βωn+h)δn1{τ1=N}
)

=
h

N
+

1
N

logK(N)

(2.12)

and the claimed non-negativity in the limit follows from (2.2). Re-
calling that F (β, h) is non-decreasing in h, for a given β the localiza-
tion/delocalization critical point is defined to be

hc(β) := sup{h : F (β, h) = 0} (2.13)

and the function β → hc(β) is referred to as the critical line. The region
of parameters

L := {(β, h) : β ≥ 0, h > hc(β)}
and

D := {(β, h) : β ≥ 0, h ≤ hc(β)}
are referred to as localized and delocalized phases, respectively. Since
level sets of a convex function are convex, L is a convex set and the func-
tion hc(.) : [0,∞) ) β → hc(β) is concave. The reason for the names
“localized” and “delocalized” can be understood looking at the so-
called contact fraction �N , defined through

�N :=
|τ ∩ {1, . . . , N}|

N
(2.14)
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and taking values between 0 and 1 (as usual, |A| denotes the cardinality
of a set A). It is immediate to check that

∂hF
ω
N (β, h) = Eβ,hN,ω(�N ) (2.15)

and, by standard arguments based on convexity, this equality survives
in the thermodynamic limit whenever the free energy is differentiable:

lim
N→∞

Eβ,hN,ω(�N ) a.s.= ∂hF (β, h) for every h such that

∂+
h F (β, h) = ∂−h F (β, h). (2.16)

We have already mentioned that differentiability holds for Lebesgue-
almost every value of h. However, much more than this is true: as it
was proven in [25], differentiability (actually, infinite differentiability)
in h holds whenever h > hc(β). We can therefore conclude the fol-
lowing: for h < hc(β) (or for h ≤ hc(β) if F (β, h) is differentiable at
hc(β)) the thermal average of the contact fraction tends for to zero for
N → ∞ (almost surely in the disorder), while for h > hc(β) it tends
to ∂hF (β, h) > 0. The average contact fraction plays the role of an or-
der parameter, like the spontaneous magnetization in the Ising model,
which is zero above the critical temperature and positive below it.

Actually, much more refined statements about the behavior of the
contact fraction in the two phases are available. In particular:

• for statements concerning the localized phase we refer to [25]. There,
it is proven that, roughly speaking, not only typical configurations
τ have a number

N �N ∼ N ∂hF (β, h)

of points, but also that these points are rather uniformly distributed
in {1, . . . , N}: long gaps between them are exponentially suppressed,
and the largest gap is of order logN (cf. Theorem 6.3 below);

• for h < hc(β) we refer to [24] and [22, Ch. 8], where it is proven
that �N is typically at most of order (logN)/N .

In this sense, if one goes back to the pictorial image of τ as the set of
points of polymer-defect contact, one sees that the definition of (de)-
localization in terms of free energy, as given above, does indeed corre-
spond to the intuitive idea in terms of path properties: in L the polymer
stays at distance O(1) from the defect, while in D it wanders away from
it and touches it only a small (at most logN) number of times.

The reader should remark that we have made no conclusive state-
ment about the behavior of the contact fraction at hc(β), since we have
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not attacked yet the very important question of the regularity of the
free energy at the critical point. This will be the subject of Sections 4
and 5.

2.5 Quenched versus Annealed Free Energy

Inequality (2.12) is a good example of how selecting a particular subset
of configurations (in that case, those for which τ1 = N) provides useful
free energy lower bounds. For more refined results in this direction we
refer to [5] and [22, Sec. 5.2]. There, this technique is employed to
prove that hc(β) is strictly decreasing as a function of β which implies
in particular that, since hc(.) is concave, hc(β) tends to −∞ for β →∞.
This corresponds to the a priori non-intuitive fact that, as mentioned
in the introduction, even if the charges are on average repulsive the
defect line can pin the polymer. This is purely an effect of spatial
inhomogeneities due to disorder: for β large, it is convenient for the
polymer to touch the defect line in correspondence of attractive charges,
where it gets a reward βωn+h >> 1, while the entropic cost of avoiding
the repulsive charges is independent of β. Free energy lower bounds
were obtained also in the study of a different model, the heteropolymer
at a selective interface, in [10].

Free energy upper bounds are on the other hand more subtle to get.
An immediate one can be however obtained by a simple application of
Jensen’s inequality:

FN (β, h) ≤ 1
N

log EZN,ω(β, h) =
1
N

log E
(
e
∑N

n=1(h+logM(β))δnδN

)

= FN (0, h+ logM(β)) =: F aN (β, h), (2.17)

where M(β) := E eβω1 . In particular, logM(β) = β2/2 in the case of
Gaussian disorder. F a(β, h) := F (0, β + logM(β)) is referred to as an-
nealed free energy, and we see that it is just the free energy of the
homogeneous system (with the same choice of K(.)) computed for a
shifted value of h. The physical interpretation of the annealed free en-
ergy is clear: since configurations of ω and τ are averaged on the same
footing, it corresponds to a system where impurities can thermalize
on the same time-scales as the “polymer degrees of freedom” (i.e., τ).
This is not the physical situation one wishes to study (quenched dis-
order corresponds rather to impurities which are frozen, or which can
evolve only on time-scales which are so long that they can be consid-
ered as infinite from the experimental point of view). All the same, the
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information provided by (2.17) is not at all empty. Define first of all
the annealed critical point as

hac (β) := sup{h : F a(β, h) = 0} = hc(0)− logM(β). (2.18)

Thanks to (2.17) and (2.13), one has immediately

hc(β) ≥ hc(0)− logM(β), (2.19)

a bound which, as will be discussed in Section 5.3, is optimal for α < 1/2
and β small.

2.6 Back to Examples and Motivations

Typical examples of renewal sequences satisfying (2.1), (2.2) are the
following. Let {Sn}n≥0 be the simple random walk (SRW) on Z, with
law PSRW and S0 := 0, i.e., {Sn−Sn−1}n∈N are IID symmetric random
variables with values in {−1,+1}. Then, it is known that [19] τ := {n ∈
N : S2n = 0} is a null-recurrent renewal sequence such that the law of
τ1 satisfies (2.2) with α = 1/2 and L(.) asymptotically constant. The
reason why one looks only at even values of n in the definition of τ
in this case is due just to the periodicity of the SRW. If instead one
takes the SRW on Z

2, then τ (defined exactly as above) is always a
null-recurrent renewal but in this case α = 0 and L(n) ∼ c/(log n)2

[34]. Note that in this case, the presence of the slowly varying function
L(.) is essential in making K(.) summable.

What happens in the case of the SRW on Z
d when d ≥ 3? This

example does not fall directly into the class we are considering since
this process is transient, and therefore the set τ of its returns to zero
is a transient renewal sequence. However this is not too bad. Indeed,
suppose more generally that one is given K(.) which satisfies (2.2)
but such that Σ :=

∑
n∈N

K(n) < 1, i.e., K(.) is a sub-probability
on N. Then, one may define K̂(n) := K(n)/Σ which is obviously a
probability. It is easy to realize from Eq. (2.8) that the Gibbs mea-
sure (and free energy) of the model defined starting from K(.) is the
same as that obtained starting from K̂(.), provided that h is replaced
by h + logΣ. The case where τ are the zeros of the SRW on Z

d

with d ≥ 3 can then be included in our discussion: Eq. (2.2) holds
with α = d/2 − 1 and L(.) asymptotically constant. In the following
we will therefore always assume, without loss of generality, that τ is
recurrent.
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We conclude this section by listing a couple of examples of (bio)-
physical situations where disordered pinning models are relevant:

• Wetting of (1 + 1)-dimensional disordered substrates [17] [21]. Con-
sider a two-dimensional system at a first order phase transition, e.g.,
the 2d-Ising model at zero magnetic field and T < Tc, or a liquid-gas
system on the coexistence line. Assume that the system is enclosed
in a square box with boundary conditions imposing one of the two
phases along the bottom side of the box and the other phase along
the other three sides. For instance, for the Ising model one can im-
pose + boundary conditions (b.c.) along the bottom side and − b.c.
along the other ones; for the liquid-gas model, one imposes that the
bottom of the box is in contact with liquid and that side and top
walls are in contact with gas. Then, there is necessarily an interface
joining the two bottom corners of the box and separating the two
phases. At very low temperature, it is customary to describe this
interface as a one-dimensional symmetric random walk (not neces-
sarily the SRW) conditioned to be non-negative, the non-negativity
constraint reflecting the fact that the interface cannot exit the box.
The directed character of the random walk implies in particular
that one is neglecting the occurrence of bubbles or overhangs in the
interface. An interesting situation occurs when the bottom wall is
“dirty” and at each point has a random interaction with the inter-
face: at some points the wall prefers to be in contact with the gas
(or − phase), and therefore tries to pin the interface, while at other
points it prefers contact with the liquid (or + phase) and repels the
interface. Of course, this non-homogeneous interaction is encoded
in the charges ωn. In this context, the (de)-localization transition is
called wetting transition. This denomination is clear if we think of
the liquid-gas model: the localized phase corresponds to an interface
which remains at finite distance from the wall (the wall is dry), while
in the delocalized phase there are few interface-wall contacts and the
height of the liquid layer on the wall diverges in the thermodynamic
limit: the wall is wet. It is known that, in great generality [19], the
law of the first return to zero of a one-dimensional random walk
conditioned to be non-negative is of the form (2.2) with α = 1/2
and L(.) asymptotically constant (this process is transient but this
fact is not so relevant, in view of the discussion at the beginning of
the present section).

• Formation of loops under thermal excitation and denaturation of
DNA molecules in the Poland-Scheraga (PS) approximation [15].
Neglecting its helical structure, the DNA molecule is essentially a
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double strand of complementary units, called “bases”. Upon heat-
ing, the bonds which keep base pairs together can break and the
two strands can partly or entirely separate (cf. figure below). This
separation, or denaturation, can be described in the context of our
disordered pinning models. The set τ represents the set of bases
whose bond is not broken. In the localized phase τ contains O(N)
points (N being interpreted here as the total DNA length), i.e.,
corresponds to the phase where the two strands are still essentially
tightly bound. In the delocalized (or denaturated) phase, on the con-
trary, only few bases pairs are bound. In formulating the PS model,
one usually takes a value α * 2.12 (cf. [35] for a justification of this
choice) and (in our notations, which are not necessarily those of the
literature on the PS model)

L(n) = σ for n ≥ 2,

where σ (the cooperativity parameter) is a small number, usually
of the order 10−5, while L(1) is fixed by the normalization condi-
tion

∑
n∈N

K(n) = 1. Quenched disorder corresponds here to the
fact that bases of the different types are placed inhomogeneously
along the DNA chain. We refer to [22, Section 1.4] for a very clear
introduction to the denaturation problem and the Poland-Scheraga
model. Here we wish to emphasize only that the renewal process τ
described by such a K(.) is not in general the set of returns of a
Markov chain, as it happens for instance in the case of the wetting
model described above.

Open base pair

0 N

Bound base pair

     Loop 

En=¯wn+h

n

Binding energy: 
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3 The Questions We are Interested in

The main questions which will be considered in these notes are the
following:

1. When is the annealed bound (2.17) a good one, i.e., when are
quenched and annealed systems similar? We will see that quenched
and annealed free energies never coincide, except in the (trivial) case
where the annealed free energy is zero (i.e., the annealed model is
delocalized). However, this does not mean that the solution of the
annealed system gives no information about the quenched one. For
instance we will show that, for α < 1/2 and weak enough disorder,
the quenched critical point coincides with the annealed one. This
will be discussed in Section 5.3.

2. What is the order of the transition? Critical exponents (in partic-
ular, the specific heat exponent, cf. next section) can be exactly
computed for the homogeneous model. The Harris criterion pre-
dicts that for small β critical exponents are those of the β = 0 (or
annealed) model if α < 1/2, and are different if α > 1/2. This is
the question of disorder relevance, discussed in Sections 5.3–5.6.

3. Truncated correlations functions are known to decay exponentially
at large distance, in the localized phase. What is the behavior of
the correlation length when the transition is approached? We will
see that, due to the presence of quenched disorder, one can actually
define two different correlation lengths. In specific cases, we will
identify these correlation lengths and give bounds on the critical
exponents which govern their divergence at hc(β).

4 The Homogeneous Model

In absence of disorder (β = 0) the model is under full mathematical
control; in particular, critical point and the order of the transition can
be computed exactly. In this section, we collect a number of known
results, referring to [22, Chapter 2] for their proofs.

The basic point is that the free energy F (0, h) is determined as
follows [26, Appendix A]: if the equation

∑

n∈N

e−bnK(n) = e−h (4.1)

has a positive solution b = b(h) > 0 then F (0, h) = b(h). Other-
wise, F (0, h) = 0. From this (recall the normalization condition

∑
n∈N
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K(n) = 1), one finds immediately that hc(0) = 0. The behavior of the
free energy in the neighborhood of hc(0) can be also obtained from (4.1).
Care has to be taken since a naive expansion of left- and right-hand
sides of (4.1) for b and h small does not work in general. However, this
analysis can be performed without much difficulty and one can prove
the following:

Theorem 4.1. [22, Th. 2.1]

1. If α = 0, F (0, h) vanishes faster than any power of h for h↘ 0.
2. If 0 < α < 1 then for h > 0

F (0, h) = h1/αL̂(1/h), (4.2)

where L̂(.) is the slowly varying function

L̂(1/h) =
(

α

Γ (1− α)

)1/α

h−1/αRα(h) (4.3)

and Rα(.) is asymptotically equivalent to the inverse of the map
x→ xαL(1/x).

3. If α = 1 and
∑
n∈N

nK(n) = ∞ then F (0, h) = h L̂(1/h) for some
slowly varying function L̂(.) which vanishes at infinity.

4. If
∑
n∈N

nK(n) <∞ (in particular, if α > 1)

F (0, h)
h↘0∼ h∑

n∈N
nK(n)

. (4.4)

In particular, note that in the situation (4), i.e., if τ is positively
recurrent under P, the transition is of first order: the free energy is not
differentiable at hc(0) = 0, i.e., the average contact fraction has a finite
jump in the thermodynamic limit. This is analogous to what happens
for the Ising model in dimension d ≥ 2: if T < Tc and one varies the
magnetic field H from 0− to 0+, the spontaneous magnetization has
a positive jump and the free energy is not differentiable. The transi-
tion is, on the other hand, continuous (at least of second order) if P
is the law of a null-recurrent renewal τ and it becomes smoother as
α decreases. In thermodynamical language, one can say that the delo-
calization transition is of kth order (F (β, .) is of class Ck−1 but not of
class Ck) for α ∈ (1/k, 1/k − 1) and of infinite order for α = 0.1

1 In order to decide between kth and (k + 1)th order for α = 1/k one needs to look
also at the slowly varying function L(.), as is already clear from points (3) and
(4) in the case of k = 1. In any case, the precise statement is that of Theorem 4.1.
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In the physics literature one introduces usually the specific heat
critical exponent ν as2

ν = 2− lim
h↘hc(β)

logF (β, h)
log(h− hc(β))

(4.5)

(provided the limit exists) and of course ν can depend on β. From
Theorem 4.1 we see that, in absence of disorder,

ν(β = 0) = 2−max(1, 1/α). (4.6)

In particular, note that ν(β = 0) > 0 as soon as α > 1/2 (this observa-
tion will become interesting in the light of the results of Section 5.6).

5 Relevance or Irrelevance of Disorder?

We have just seen that the phase transition of the homogeneous pinning
model can be of any given order - from first to infinite - depending on
the choice of K(.) in (2.2) and, in particular, on the value of α. In this
section we discuss the effect of disorder on the transition and we are
primarily interested in the question of disorder relevance. There are
actually two distinct (but inter-related) aspects in this question:

Q1 does an arbitrarily small quantity of disorder change the critical
exponent ν (i.e., the order of the transition)?

Q2 does the quenched critical point differ from the annealed one for
very weak disorder?

One expects the answer to both questions to be “no” if α < 1/2 and
“yes” if α > 1/2, while the case α = αc = 1/2 is more subtle and not
clear even heuristically [17, 21] (see, however, Theorem 5.5).

The plan is the following: we will first of all (Section 5.1) make a non-
rigorous computation, in the spirit of the Harris approach [33], which
shows why the watershed value for α, distinguishing between relevance
and irrelevance, is expected to be αc = 1/2, i.e., the value for which
the critical exponent ν vanishes for the homogeneous model (cf. (4.6)).
Next, in Section 5.2 we prove an upper bound for the free energy which
strictly improves the annealed bound (2.17). In the proof of this bound
we introduce the technique of interpolation, by now classical in spin
glass theory but sort of new in this context. We would like to emphasize
2 The symbol ν for the specific heat exponent is not standard in the literature, but

we have already used the letter α for another purpose. The same remark applies
to the symbols we use for other critical exponents.
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that interpolation (and replica coupling, cf. Section 5.5) techniques have
proven recently to be extremely powerful in the analysis of mean field
spin glass models, cf. for instance [32], [1], [39], while their relevance in
the domain of disordered pinning model had not been realized clearly
so far.

As a byproduct, our new upper bound partially justifies the heuristic
expansion of Section 5.1. The question of relevance is taken up more
seriously in Sections 5.3 to 5.6. In the former we will see, among other
results, that answers to both Q1 and Q2 are actually “no” for α < αc.
In the latter, on the other hand, we show that critical exponents are
modified by disorder for α > αc: in particular, we will see that ν ≤ 0
whenever β > 0.

In the whole of Section 5 we consider only the case of Gaussian
disorder. This allows for technically simpler proofs, but results can be
generalized for instance to the bounded disorder case.

5.1 Harris Criterion and the Emergence of αc = 1/2

Let us note for clarity that, putting together the discussion of Section 4
and Eq. (2.18), in the Gaussian case the annealed critical point equals
hac (β) = −β2/2. The first step of our heuristic argument is rigorous
and, actually, an immediate identity:

FN (β, h) = F aN (β, h) +
1
N

E log
〈
e
∑N

n=1(βωn−β2/2)δn
〉

N,h−ha
c (β)

, (5.1)

where 〈.〉N,h := E0,h
N,0(.) is just the Boltzmann average for the homo-

geneous system (cf. Eq. (2.8)). Identity (5.1) can be rewritten in a
more suggestive way if we recall the last equality in (2.17) and we let
h = hac (β) +Δ with Δ ≥ 0:

FN (β, hac (β) +Δ) = FN (0, Δ) +RN,Δ(β) :=

= FN (0, Δ) +
1
N

E log
〈
e
∑N

n=1(βωn−β2/2)δn
〉

N,Δ
. (5.2)

Irrelevance of disorder amounts to the fact that, for β sufficiently small,
the “error term” RN,Δ(β) is negligible with respect to the “main term”
FN (0, Δ). As we will see, the question is subtle since we are interested
in both Δ and β small, and the two limits do not in general commute.
For the moment, let us proceed without worrying about rigor and let
us expand naively RN,Δ(β) for β small and Δ,N fixed:
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〈
e
∑N

n=1(βωn−β2/2)δn
〉

N,Δ
= 1 +

N∑

n=1

(βωn − β2/2) 〈δn〉N,Δ+

+
β2

2

N∑

n,m=1

ωnωm 〈δnδm〉N,Δ +O(β3). (5.3)

Expanding the logarithm and using the fact that Eωn = 0 and
E(ωnωm) = 1{n=m} one has, always formally,

RN,Δ(β) = − β
2

2N

N∑

n=1

(
〈δn〉N,Δ

)2
+O(β3). (5.4)

In the limit N →∞ one has by definition of the homogeneous model

lim
N→∞

〈�N 〉N,Δ = lim
N→∞

1
N

N∑

n=1

〈δn〉N,Δ = ∂ΔF (0, Δ).

Since 〈δn〉N,Δ should not depend on n as soon as 1 � n� N , one can
expect (actually, this can be proven without much difficulty) that

lim
N→∞

n/N→m∈(0,1)

〈δn〉N,Δ = ∂ΔF (0, Δ). (5.5)

In conclusion, we find

F (β, hac (β) +Δ) = F (0, Δ)− β
2

2
(∂ΔF (0, Δ))2 +O(β3). (5.6)

Even without trying (for the moment) to justify this expansion or to
look more closely at the Δ-dependence of the error term O(β3), we can
extract something important from Eq. (5.6). We know from Theorem
4.1 that, for α < 1 and Δ > 0 small, F (0, Δ) * Δ1/α which implies (cf.
the proof of Eq. (5.19) for details) that ∂ΔF (0, Δ) * Δ1/α−1. Then we
see immediately that, indeed, for α < 1/2

β2

2
(∂ΔF (0, Δ))2 � F (0, Δ) (5.7)

if Δ and β are small. In terms of the Harris criterion, disordered is said
to be irrelevant in this case and one can hope that the expansion can
be actually carried on at higher orders. For 1/2 < α < 1, however, this
is false: even if β is small, choosing Δ sufficiently close to zero the left-
hand side of (5.7) is much larger than the right-hand side. This means
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that “disorder is relevant” and the small-disorder expansion breaks
down immediately. The same holds for α ≥ 1, when F (0, Δ) * Δ and
∂ΔF (0, Δ) ∼ const. The threshold value αc = 1/2 is clearly a “marginal
case” where relevance or irrelevance of disorder cannot be decided (even
on heuristic grounds) by a naive expansion in β.

The rest of this section will be devoted to give rigorous bases to this
suggestive picture. As a byproduct we will learn something interesting
for the case 1/2 < α < 1: while disorder is relevant and changes the
exponent ν, it modifies the transition only “very close” to the critical
point (cf. Theorem 5.3).

5.2 A Rigorous Approach: Interpolation
and an Improvement upon Annealing

In Section 2.5 we saw that a simple application of Jensen’s inequality
implies F (β, h) ≤ F a(β, h). Here we wish to show that this inequality
is strict as soon as disorder is present (β > 0) and the annealed system
is localized. Moreover, we will partly justify the small-β expansion of
Section 5.1 for α < 1/2, showing that it provides an upper bound for
the quenched free energy.

More precisely:

Theorem 5.1. [43, Th. 2.6] For every β > 0, α ≥ 0 and Δ > 0

F (β, hac (β) +Δ) ≤ inf
0≤q≤Δ/β2

(β2q2

2
+ F (0, Δ− β2q)

)
<

< F (0, Δ) = F a(β, h). (5.8)

In particular, if 0 ≤ α < 1/2 there exist constants β0 > 0, Δ0 > 0 such
that

F (β, hac (β) +Δ) ≤ F (0, Δ)− β
2

2
(∂ΔF (0, Δ))2 (1 +O(β2)) (5.9)

for β ≤ β0, Δ ≤ Δ0, where O(β2) is does not depend on Δ. On the other
hand, if β = 0 or Δ ≤ 0, then F (β, hac (β) +Δ) = F a(β, hac (β) +Δ).

About the possibility of pushing the upper bound (5.9) to order higher
than β2 see Remark 3.1 in [43]. It is obvious that (5.9) cannot hold for
α > 1/2 since, as already observed after Eq. (5.7), the right-hand side
is negative for Δ sufficiently small.

Readers familiar with mean field spin glass models will remark
a certain similarity between the variational bound (5.8) and the
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“replica symmetric” variational bound [30] for the free energy of the
Sherrington-Kirkpatrick model. However, we do not see a natural way
to generalize (5.8) to include “replica symmetry breaking” in analogy
with [29] [1].

Proof of Theorem 5.1. The proof is rather instructive because it
allows us to introduce the technique of “interpolation”, which will play
a major role in the next subsection. We start from identity (5.2) and,
for Δ > 0, q ∈ R and 0 ≤ t ≤ 1, we define

RN,Δ(t, β, q) :=
1
N

E log
〈
e
∑N

n=1[β
√
tωn−tβ2/2+β2q(t−1)]δn

〉

Δ,N
. (5.10)

In spin glass language, this would be called an “interpolating free
energy”, since by varying the parameter t it relates in a smooth way
the quantity we wish to estimate at t = 1,

RN,Δ(t = 1, β, q) = RN,Δ(β) (5.11)

to something easy at t = 0:

RN,Δ(t = 0, β, q) = FN (0, Δ− β2q)− FN (0, Δ). (5.12)

A priori, there is no reason why RN,Δ(t, β, q) should be any easier to
compute for 0 < t < 1 than for t = 1. What helps us is that the
t-derivative of RN,Δ(t, β, q) can be bounded above by throwing away a
(complicated) term which, luckily, has a negative sign. To see this we
need first of all manageable notations and we will set

〈g(τ)〉N,Δ,t :=

〈
g(τ)e

∑N
n=1[β

√
tωn−tβ2/2+β2q(t−1)]δn

〉

Δ,N〈
e
∑N

n=1[β
√
tωn−tβ2/2+β2q(t−1)]δn

〉

N,Δ

(5.13)

for every measurable function g(τ). We find then

d
dt
RN,Δ(t, β, q) =

β2

N

(
−1

2
+ q

) N∑

m=1

E 〈δm〉N,Δ,t+

+
β

2
√
tN

N∑

m=1

Eωm 〈δm〉N,Δ,t . (5.14)

The last term of (5.14) can be rewritten using the Gaussian integration
by parts formula

E (ωf(ω)) = Ef ′(ω), (5.15)
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which holds (if ω is a Gaussian random variable N (0, 1)) for every
differentiable function f(.) such that lim|x|→∞ exp(−x2/2)f(x) = 0. In
our case, the function f is of course 〈δm〉N,Δ,t and one finds

β

2
√
tN

N∑

m=1

Eωm 〈δm〉N,Δ,t =
β2

2N

N∑

m=1

E

(
〈δm〉N,Δ,t −

(
〈δm〉N,Δ,t

)2
)
.

(5.16)

The positive term comes from the differentiation of the numerator of
〈δm〉N,Δ,t (recall the definition (5.13)) and the negative one from the
denominator, and we used the obvious δm = (δm)2. Putting together
Eqs. (5.14) and (5.16) one has therefore

d
dt
RN,Δ(t, β, q) =

β2q2

2
− β2

2N

N∑

n=1

E

{(
〈δn〉N,Δ,t − q

)2
}
≤ β

2q2

2
.

(5.17)

At this point we are done: we integrate on t between 0 and 1 inequality
(5.17), we recall the boundary conditions (5.12) and (5.11) and we get

RN,Δ(β) ≤ FN (0, Δ− β2q)− FN (0, Δ) +
β2q2

2
. (5.18)

Together with Eq. (5.1), taking N → ∞ limit and minimizing over q
proves (5.8). Let us remark that minimizing over q ∈ R or on 0 ≤ q ≤
Δ/β2 is clearly equivalent. The strict inequality in (5.8) is just due
to the fact that the derivative with respect to q of the quantity to be
minimized, computed at q = 0, is negative.

The expansion (5.9) is just a consequence of (5.8). Remark first of
all that, at the lowest order in β, the minimizer in (5.8) is q = qΔ :=
∂ΔF (0, Δ). Then, from identity (4.1) one finds that there exist slowly
varying functions L(i)(.), i = 1, 2 such that for α < 1/2 and Δ > 0

∂ΔF (0, Δ) = Δ(1−α)/αL(1)(1/Δ), ∂2
ΔF (0, Δ) = Δ(1−2α)/αL(2)(1/Δ).

(5.19)

Let us show for instance the first equality. Differentiating both sides of
(4.1) with respect to Δ one finds

∂ΔF (0, Δ) =
e−Δ∑

n∈N
n−αL(n) exp(−F (0, Δ)n)

. (5.20)

Using Theorems A.1 and A.2 one has then, for Δ → 0 (i.e., for
F (0, Δ) → 0)
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∂ΔF (0, Δ)
Δ↘0∼ Γ (2− α)L(1/F (0, Δ))

(1− α)F (0, Δ)1−α
(5.21)

which, together with (4.2), proves the first equality in (5.19) for a suit-
able L(1)(.). Note, by the way, that thanks to (5.19) one has qΔ < Δ/β2

for Δ,β sufficiently small (and α < 1/2, of course). Another conse-
quence of (5.19) is that ∂2

ΔF (0, Δ) is bounded above by a finite constant
C for, say, Δ ≤ 1. Then, a Taylor expansion gives

F (0, Δ− β2qΔ) ≤ F (0, Δ)− β2(∂ΔF (0, Δ))2 + Cβ4(∂ΔF (0, Δ))2,

whence Eq. (5.9).
Finally, the statement for β = 0 or Δ ≤ 0 is trivial: for β = 0

there is no disorder to distinguish between quenched an annealed free
energies, and for Δ ≤ 0 one has F a(β, hac (β) +Δ) = 0 which, together
with (2.17) and F (β, h) ≥ 0, implies the statement. ��

5.3 Irrelevance of Disorder for α < 1/2 via Replica Coupling

We want to say first of all that, if 0 < α < 1/2 and β is sufficiently small
(i.e., if disorder is sufficiently weak), then hc(β) = hac (β). Recalling that
F a(β, hac (β) +Δ) = F (0, Δ), this follows immediately from

Theorem 5.2. [4, 43] Assume that either 0 < α < 1/2 or that

α = 1/2 and
∑

n∈N

n−1L(n)−2 <∞. (5.22)

Then, for every ε > 0 there exist β0(ε) > 0 and Δ0(ε) > 0 such that,
for every β ≤ β0(ε) and 0 < Δ < Δ0(ε), one has

(1− ε)F (0, Δ) ≤ F (β, hac (β) +Δ) ≤ F (0, Δ). (5.23)

Observe that this implies in particular that, under the assumptions of
the theorem, the exponent ν equals 2 − 1/α as in the homogeneous
case. Indeed note that, for Δ small,

log(1− ε) + logF (0, Δ)
logΔ

≥ logF (β, hc(β) +Δ)
logΔ

≥ logF (0, Δ)
logΔ

(5.24)

and the statement follows taking the limit Δ→ 0 from definition (4.5)
of the specific heat exponent.

We will see in Section 5.6 that the same cannot hold for α > 1/2:
in that case, ν is necessarily non-positive in for the quenched system
presence of disorder, while it is positive for the annealed system. One
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could therefore think that quenched and annealed behaviors are com-
pletely different. This is however not completely true. Indeed, the next
theorem shows that F (β, h) and F a(β, h) are very close, provided that
1/2 ≤ α < 1 if one is not too close to the critical point. More precisely
one has

Theorem 5.3. Assume that 1/2 < α < 1. There exists a slowly varying
function Ľ(.) and, for every ε > 0, constants a1(ε) <∞ and Δ0(ε) > 0
such that, if

a1(ε)β2α/(2α−1)Ľ(1/β) ≤ Δ ≤ Δ0(ε), (5.25)

the inequalities (5.23) hold.

To see more clearly what this says on the relation between quenched
and annealed critical points, forget about the slowly varying functions;
then, Theorem 5.3 implies

0 ≤ hc(β)− hac (β) � β2α/(2α−1).

Since 2α/(2α− 1) > 2, this shows in particular that

lim
β↘0

hc(β)
hac (β)

= 1. (5.26)

Remark 5.4. Theorem 5.3 was proven in [4, Th. 3] and then in [43,
Th. 2.2]. The two results differ only in the form of the slowly varying
function Ľ(.). In general, the function Ľ(.) which pops out from the
proof in [43, Th. 2.2] is larger (i.e., worse) than that of [4, Th. 3].

Finally, we consider the “marginal case” α = αc = 1/2 and∑
n

1
nL(n)2

= ∞. This is the case, for instance, if P is the law of
the returns of a one-dimensional symmetric random walk, where L(.)
is asymptotically constant, as mentioned in Section 2.6. As we men-
tioned, this case is still debated even in the physical literature. The
“most likely” scenario [17] is that disorder is “marginally relevant” in
this case: hc(β) �= hac (β) for every positive β, but the two critical points
are equal at every order in a weak-disorder perturbation theory. Other
works, e.g. [21], claim on the other hand that disorder is irrelevant in
this situation.

What one can prove for the moment is the following:

Theorem 5.5. [4, 43] Assume that α=1/2 and
∑
n∈N

n−1L(n)−2 =∞.
Let �(.) be the slowly varying function (diverging at infinity) defined by
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N∑

n=1

1
nL(n)2

N→∞∼ �(N). (5.27)

For every ε > 0 there exist constants a2(ε) < ∞ and Δ0(ε) > 0 such
that, if 0 < Δ ≤ Δ0(ε) and if the condition

1
β2
≥ a2(ε) �

(
a2(ε)| logF (0, Δ)|

F (0, Δ)

)
(5.28)

is verified, then Eq. (5.23) holds.

Remark 5.6. To be precise, in the statement of [4, Th. 4] the condition
(5.28) is replaced by a different one (essentially, the factor | logF (0, Δ)|
in the argument of �(.) does not appear). In this sense, the condition
(5.28) under which we prove here (5.23) is not the best possible one.
However, for many “reasonable” and physically interesting choices of
L(.) in (2.2), Theorem 5.5 and Theorem 4 of [4] are equivalent. In
particular, if P is the law of the returns to zero of the simple random
walk {Sn}n≥0 in one dimension, i.e. τ = {n ≥ 0 : S2n = 0}, in which
case L(.) and L̃(.) are asymptotically constant and �(N) ∼ a3 logN ,
one sees easily that (5.28) is verified as soon as

Δ ≥ a4(ε)e
−a5(ε)

β2 , (5.29)

which is the same condition given in [4].
Note, by the way, that in this case the difference hc(β) − hac (β)

vanishes faster than any power of β, for β ↘ 0. This confirms the fact
that, even if the two critical points can be different, they cannot be
distinguished perturbatively.

5.4 Some Open Problems

The results of previous section, while giving rigorous bases to predic-
tions based on the Harris criterion, leave various intriguing gaps in our
comprehension of the matter. Let us list a few of them, in random
order:

1. Let α < 1/2. Does there exist a βc < ∞ such that hc(β) �= hac (β)
for β > βc? If yes, how smooth is hc(β) at βc? Does ν equal 2−1/α
also for β large?

2. Again, let α < 1/2 and look at Eq. (5.9). Is it true that

F (β, hac (β) +Δ) ≥ F (0, Δ)− β
2

2
(∂ΔF (0, Δ))2(1 +O(β2))?
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3. Under the assumptions of Theorems 5.3 or 5.5, does there exist
positive values of β for which quenched and annealed critical points
coincide? It is sort of reasonable to conjecture that the answer is
“no”, at least for α > 1/2.

The reader might be tempted to think that such questions should be
easy to answer numerically. If so, he should have a look at Ref. [12]
where one gets an idea (in the context of random heteropolymers at
selective interfaces) of why numerical tests become extremely hard in
the neighborhood of the critical curve.

Remark 5.7. Between the time these notes were written and the time
they were published, the above open problems have been to a large
extent solved. In particular:

• in Ref. [44] it was proven that for every α > 0, if β is large enough
and, say, ω is Gaussian, then hc(β) �= hac (β).

• The question posed in open problem (2) has been answered posi-
tively in Ref. [28], although in a slightly weaker sense.

• In Ref. [16] it was proven that as soon as α > 1/2 and β > 0 one
has hc(β) �= hac (β).

5.5 Proof of Theorems 5.2–5.5

We follow the approach of [43] which, with respect to that of [4], has
the advantage of technical simplicity and of being closely related to the
interpolation ideas of Section 5.2. On the other hand, we encourage the
reader to look also at the methods developed in [4], which have the
bonus of extending in a natural way beyond the Gaussian case and of
giving in some cases sharper results (cf. Remarks 5.4 and 5.6 above).

A natural idea to show that quenched and annealed systems have
(approximately) the same free energy is to apply the second moment
method: one computes E(ZN (β, h)) and E((ZN (β, h))2) and if it hap-
pens that the ratio

[EZN,ω(β, h)]2

E[(ZN,ω(β, h))2]
(5.30)

remains positive for N → ∞, or at least it vanishes slower than ex-
ponentially, it is not difficult to deduce that F (β, h) = F a(β, h). This
approach has turned out to be very powerful for instance in control-
ling the high-temperature phase of the Sherrington-Kirkpatrick mean
field model in absence of magnetic field [40, Ch. 2.2]. However, this
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simple idea does not work in our case and the ratio (5.30) vanishes
exponentially for every β,Δ > 0. This is not surprising after all, since
we already know from Theorem 5.1 that quenched and annealed free
energy do not coincide. There are two possible ways out of this prob-
lem. One is to perform the second moment method not on the system
of size N but on a smaller system whose size N(Δ) remains finite
as long as Δ is positive and fixed, and diverges only for Δ → 0. If
N(Δ) is chosen to be the correlation length of the annealed system,
one can see that on this scale the ratio (5.30) stays positive, so that
FN(Δ)(β, hac (β) +Δ) * FN(Δ)(0, Δ). One is then left with the delicate
problem of glueing together many blocks of size N(Δ) to obtain an
estimate of the type F (β, hac (β) +Δ) ≥ (1− ε)F (0, Δ) for the full free
energy. This is, in very rough words, the approach of Ref. [4]. The other
possibility, which we are going to present, is to abandon the second mo-
ment idea in favor of a generalization of the replica coupling method
[31] [43]. This method was introduced in [31] in the context of mean
field spin glasses and gives a very efficient control of the Sherrington-
Kirkpatrick model at high temperature (β small), i.e., for weak disor-
der, which is the same situation we are after here.

The two methods are in reality not orthogonal: they share the idea
that the important object to look at is the intersection of two indepen-
dent renewals τ (1), τ (2). To see why this quantity arises naturally, let
us compute the second moment of the partition function. If τ (1), τ (2)

are independent renewal processes with product law P⊗2(.), recalling
the definition Δ = h+ β2/2, one can write

E((ZN,ω(β, h))2) =

EE⊗2

(
e
∑N

n=1(βωn+h)(1{n∈τ(1)}+1{n∈τ(2)})
1{N∈τ(1)}1{N∈τ(2)}

)
=

=E⊗2[eΔ(|τ(1)∩{1,...,N}|+|τ(2)∩{1,...,N}|)+β2|τ(1)∩τ(2)∩{1,...,N}|1{N∈τ(1)}1{N∈τ(2)}
]
.

(5.31)

Considering also that

[EZN,ω(β, h)]2 = E⊗2
(
eΔ|(τ (1)∩{1,...,N}|+|τ(2)∩{1,...,N}|)1{N∈τ(1)}1{N∈τ(2)}

)

one sees that the ratio (5.30) depends on the typical number of points
that τ (1) and τ (2) have in common up to time N . One sees also why
this ratio has to vanish exponentially N → ∞: as long as Δ > 0 the
renewals τ (i), with law modified by the factor exp(Δ|τ (1)∩{1, . . . , N}|),
are finitely recurrent and therefore will have a number of intersections
in {1, . . . , N} which grows proportionally to N .
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Proof of Theorem 5.2. The second inequality in (5.23) is just Eq.
(2.17). As for the first one, let Δ > 0 and recall identity (5.2). Define,
in analogy with (5.10),

RN,Δ(t, β) :=
1
N

E log
〈
e
∑N

n=1(β
√
tωn−tβ2/2)δn

〉

Δ,N
(5.32)

for 0 ≤ t ≤ 1 (to the purpose of Theorem 5.2 we do not need the
variational parameter q) where the measure 〈.〉N,Δ was defined after
Eq. (5.1). Observe that

RN,Δ(0, β) = 0 (5.33)

while

RN,Δ(1, β) = RN,Δ(β). (5.34)

As for the t-derivative one finds (just take (5.17) and put q = 0):

d
dt
RN,Δ(t, β) = − β

2

2N

N∑

m=1

E

{(〈
δm e

∑N
n=1(β

√
tωn−tβ2/2)δn

〉

Δ,N〈
e
∑N

n=1(β
√
tωn−tβ2/2)δn

〉

Δ,N

)2}
.

(5.35)
Recall definition (5.13) (specialized to the case q = 0) of the ran-
dom measure 〈.〉N,Δ,t and let 〈.〉⊗2

N,Δ,t be the product measure acting

on the pair (τ (1), τ (2)), while δ(i)n := 1{n∈τ (i)}. Note that the two repli-

cas τ (i), i = 1, 2 are subject to the same realization ω of disorder. Then,
one can rewrite

d
dt
RN,Δ(t, β) = − β

2

2N
E

N∑

m=1

〈
δ(1)m δ

(2)
m

〉⊗2

N,Δ,t
=

= − β
2

2N
E

〈∣∣∣τ (1) ∩ τ (2) ∩ {1, . . . , N}
∣∣∣
〉⊗2

N,Δ,t
. (5.36)

Since we need a lower bound for RN,Δ(β) to prove the first inequality
in (5.23), the fact that this derivative is non-positive seems to go in the
wrong direction. Let us not lose faith and let us define, for λ ≥ 0,

R
(2)
N,Δ(t, λ, β) :=

1
2N

E log
〈
eHN (t,λ,β;τ (1),τ (2))

〉⊗2

N,Δ

:=
1

2N
E log

〈
e
∑N

n=1(β
√
tωn−tβ2/2)(δ

(1)
n +δ

(2)
n )+λβ2

∑N
n=1 δ

(1)
n δ

(2)
n

〉⊗2

N,Δ

(5.37)
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where the product measure 〈.〉⊗2
N,Δ acts on the pair (τ (1), τ (2)). The

index “(2)” refers to the fact that this quantity involves two copies
(replicas) of the system. Observe that we are letting the two replicas
interact through a term which is positive, extensive (i.e., of order N)
and closely related to what appears in the right-hand side of Eq. (5.36).
Note also that

R
(2)
N,Δ(0, λ, β) =

1
2N

log
〈
eλβ

2
∑N

n=1 δ
(1)
n δ

(2)
n

〉⊗2

N,Δ
, (5.38)

while the factor 2 in the denominator guarantees that

R
(2)
N,Δ(t, 0, β) = RN,Δ(t, β). (5.39)

Again via integration by parts (the computation is conceptually as easy
as the one which led to Eq. (5.17)),

d
dt
R

(2)
N,Δ(t, λ, β) =

β2

2N

N∑

m=1

E

〈
δ
(1)
m δ

(2)
m eHN (t,λ,β;τ (1),τ (2))

〉⊗2

N,Δ〈
eHN (t,λ,β;τ (1),τ (2))

〉⊗2

N,Δ

−

− β2

4N

N∑

m=1

E

{(
〈
(δ(1)m + δ(2)m )eHN (t,λ,β;τ (1),τ (2))

〉⊗2

N,Δ〈
eHN (t,λ,β;τ (1),τ (2))

〉⊗2

N,Δ

)2
}
≤

≤ β2

2N
E

N∑

m=1

〈
δ
(1)
m δ

(2)
m eHN (t,λ,β;τ (1),τ (2))

〉⊗2

N,Δ〈
eHN (t,λ,β;τ (1),τ (2))

〉⊗2

N,Δ

=
d
dλ
R

(2)
N,Δ(t, λ, β).

(5.40)

This can be rewritten as

d
dt
R

(2)
N,Δ(t, λ− t, β) ≤ 0

which implies that, for every 0 ≤ t ≤ 1 and λ,

R
(2)
N,Δ(t, λ, β) ≤ R(2)

N,Δ(0, λ+ t, β). (5.41)

Going back to Eqs. (5.35) and the last equality in (5.40) and using the
fact that for every convex function ψ(.) one has xψ′(0) ≤ ψ(x)− ψ(0)
one finds
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d
dt

(−RN,Δ(t, β)) =
d
dλ
R

(2)
N,Δ(t, λ, β)

∣∣∣
λ=0

≤

≤
R

(2)
N,Δ(t, 2− t, β)−R(2)

N,Δ(t, 0, β)

2− t . (5.42)

Finally, using monotonicity of R(2)
N,Δ(t, λ, β) with respect to λ and

(5.39), one obtains the bound

d
dt

(−RN,Δ(t, β)) ≤ R(2)
N,Δ(0, 2, β) + (−RN,Δ(t, β)), (5.43)

where we used (5.41) and the fact that 2 − t ≥ 1 (of course, we could
have chosen 1 + η − t instead of 2− t for some η > 0 in (5.42) and the
estimates would be modified in a straightforward way). We can now
integrate with respect to t between 0 and 1 this differential inequality
(or use Gronwall’s Lemma, if you prefer) and, recalling Eqs. (5.34) and
(5.33), we obtain

−(e− 1)R(2)
N,Δ(0, 2, β) ≤ RN,Δ(β) ≤ 0. (5.44)

Before we proceed, we would like to summarize what we did so far.
To prove Theorem 5.2 we need the lower bound limN→∞RN,Δ(β) ≥
−εF (0, Δ) but, as in Section 5.2, it seems that the interpolation method
gives rather upper bounds on RN,Δ(β). Then, through the replica cou-
pling trick we transferred this problem into the problem of proving
an upper bound for a quantity, R(2)

N,Δ(t, λ, β), which is analogous to
RN,Δ(β), except that it involves two interacting copies of the system.
Moreover, by throwing away a (complicated, but with a definite sign)
term in Eq. (5.40), we reduced to the problem of bounding from above
R

(2)
N,Δ(t, λ, β) computed at t = 0. In other words, we replaced the task

of estimating from below RN,Δ(β) with that of estimating from above
a quantity which involves no quenched disorder, and which is there-
fore easier to analyze. While this procedure might look a bit magic,
the basic underlying idea is the following. R(2)

N,Δ(t, λ, β) is obviously
non-decreasing as a function of λ. Suppose however that, for some
λ > 0, R(2)

N,Δ(t, λ, β) is not very different from the value it has at
λ = 0 (of course, proving this amounts to proving an upper bound
on R(2)

N,Δ(t, λ, β).) Then, looking at the definition (5.37), this means
that the cardinality of the intersection τ (1) ∩ τ (2) ∩ {1, . . . , N} is typi-
cally not large and this, through Eqs. (5.33), (5.34) and (5.36) implies
a lower bound on RN,Δ(β).
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Let us now restart from (5.44) and note that

R
(2)
N,Δ(0, 2, β) =

= −FN (0, Δ)+
1

2N
log E⊗2

(
e2β

2
∑N

n=1 δ
(1)
n δ

(2)
n +Δ

∑N
n=1(δ

(1)
n +δ

(2)
n )δ

(1)
N δ

(2)
N

)
≤

≤ −FN (0, Δ) +
FN (0, qΔ)

q
+

1
2Np

log E⊗2
(
e2pβ

2
∑N

n=1 δ
(1)
n δ

(2)
n

)

(5.45)

where we used Hölder’s inequality and the positive numbers p and q
(satisfying 1/p+ 1/q = 1) are to be determined. Taking the thermody-
namic limit,

lim sup
N→∞

R
(2)
N,Δ(0, 2, β) ≤ lim sup

N→∞

1
2Np

log E⊗2
(
e2pβ

2
∑N

n=1 δ
(1)
n δ

(2)
n

)

+ F (0, Δ)
(

1
q

F (0, qΔ)
F (0, Δ)

− 1
)
. (5.46)

But we know from the expression (4.2) of the free energy of the homo-
geneous system and from the property (2.3) of slow variation that, for
every q > 0,

lim
Δ→0+

F (0, qΔ)
F (0, Δ)

= q1/α. (5.47)

Therefore, taking q = q(ε) sufficiently close to (but strictly larger than)
1 and Δ0(ε) > 0 sufficiently small one has, uniformly on β ≥ 0 and on
0 < Δ ≤ Δ0(ε),

lim sup
N→∞

R
(2)
N,Δ(0, 2, β) ≤

≤ ε

e− 1
F (0, Δ) + lim sup

N→∞

1
2Np(ε)

log E⊗2
(
e2p(ε)β

2
∑N

n=1 δ
(1)
n δ

(2)
n

)
.

(5.48)

Of course, p(ε) := q(ε)/(q(ε) − 1) < ∞ as long as ε > 0. Note that, in
view of (5.44), Theorem 5.2 would be proved if the second term in the
right-hand side of (5.48) were zero. Up to now, we have not used yet
the assumption that α < 1/2 or that (5.22) holds, but now the right
moment has come. The way this assumption enters the game is that it
guarantees that the renewal τ (1) ∩ τ (2) is transient under the law P⊗2.
Indeed,
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E⊗2

(∑

n≥1

1n∈τ (1)∩τ (2)
)

=
∑

n≥1

P(n ∈ τ)2 <∞ (5.49)

since, as proven in [18],

P(n ∈ τ) n→∞∼ Cα
L(n)n1−α :=

α sin(πα)
π

1
L(n)n1−α . (5.50)

Actually, Eq. (5.50) holds more generally for 0 < α < 1 and we will
need it to prove Theorems 5.3 and 5.5.

Transience and renewal properties of the process of τ (1)∩τ (2) implies
that

P⊗2(|τ (1) ∩ τ (2)| ≥ k) ≤ (1− c)k, (5.51)

for some 0 < c < 1: after each “renewal epoch”, i.e., each point of τ (1)∩
τ (2), the intersection renewal has a positive probability c of jumping to
infinity. Therefore, there exists β1 > 0 such that

sup
N

E⊗2
(
e2p(ε)β

2
∑N

n=1 δ
(1)
n δ

(2)
n

)
<∞ (5.52)

for every β2p(ε) ≤ β2
1 . Together with (5.48) and (5.2), this implies

F (β, hac (β) +Δ) ≥ (1− ε)F (0, Δ) (5.53)

as soon as β2 ≤ β2
0(ε) := β2

1/p(ε), and therefore the validity of
Theorem 5.2. �

Proof of Theorem 5.3. In what follows we assume that Δ is suf-
ficiently small so that F (0, Δ) � 1. For simplicity of exposition, we
assume also that L(.) tends to a positive constant L(∞) at infinity (for
the general case, which is not significantly more difficult, cf. [43]).

If we try to repeat the proof of Theorem 5.3 in this case, what goes
wrong is that the intersection τ (1)∩τ (2) is now recurrent, so that (5.52)
does not hold any more. The natural idea is then not to let N tend to
infinity at Δ fixed, but rather to work on a system of size N(Δ), which
diverges only when Δ → 0, i.e., when the annealed critical point is
approached. In particular, we let N = N(Δ) := c| logF (0, Δ)|/F (0, Δ)
with c > 0 large to be fixed later. Note also that this choice of N(Δ) is
quite similar to that made in [4], where one applies the second moment
method on a system of size c/F (0, Δ) with c large. This choice has
a clear physical meaning: indeed, we will see in Section 6 that the
correlation functions of the annealed system decay exponentially on
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distances of order 1/F (0, Δ) (the logarithmic factor in our definition of
N(Δ) should be seen as a technical necessity).

By the superadditivity property (2.11) we have, in analogy with
(5.1),

F (β,−β2/2 +Δ) ≥ FN(Δ)(0, Δ) +RN(Δ),Δ(β). (5.54)

To prove Theorem 5.3 we need to show that the first term in the right-
hand side of (5.54) is essentially F (0, Δ), while the second is not smaller
than −εF (0, Δ), in the range of parameters determined by condition
(5.25). The first fact is easy: as follows from Proposition 2.7 of [25],
there exists a6 ∈ (0,∞) (depending only on the lawK(.) of the renewal)
such that

FN (0, Δ) ≥ F (0, Δ)− a6
logN
N

(5.55)

for every N . Choosing c = c(ε) large enough, Eq. (5.55) implies that

FN(Δ)(0, Δ) ≥ (1− ε)F (0, Δ). (5.56)

As for RN(Δ),Δ(β), we have from Eqs. (5.44) and (5.45)

RN(Δ),Δ(β)
e− 1

≥ − F (0, Δ)
(

1
q

F (0, qΔ)
F (0, Δ)

− 1
)
− εF (0, Δ)

− 1
2N(Δ)p

log E⊗2
(
e2pβ

2
∑N(Δ)

n=1 δ
(1)
n δ

(2)
n

)
,

(5.57)

where we used Eqs. (5.56) and (2.11) to bound −(1/q)FN(Δ)(0, qΔ) +
FN(Δ)(0, Δ) from below. Choosing again q = q(ε) we obtain, for Δ ≤
Δ0(ε),

RN(Δ),Δ(β)
e− 1

≥−2εF (0, Δ)− 1
2N(Δ)p(ε)

log E⊗2
(
e2p(ε)β

2
∑N(Δ)

n=1 δ
(1)
n δ

(2)
n

)
.

(5.58)

It was proven in [4, Lemma 3] and [43, Section 3.1] that if 1/2 < α < 1
there exists a7 =∈ (0,∞), which depends in particular on L(∞), such
that for every integers N and k

P⊗2
(∣∣∣τ (1) ∩ τ (2) ∩ {1, . . . , N}

∣∣∣ ≥ k
)
≤

(
1− a7

N2α−1

)k
, (5.59)

which should be compared with (5.51), valid for α < 1/2. Thanks to
the geometric bound (5.59) we have
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E⊗2
(
e2p(ε)β

2
∑N(Δ)

n=1 δ
(1)
n δ

(2)
n

)
=

∑

k≥0

P⊗2

⎛

⎝
N(Δ)∑

n=1

δ(1)n δ
(2)
n = k

⎞

⎠ e2p(ε)β2k

≤
(

1− e2β2p(ε)

(
1− a7

N(Δ)2α−1

))−1

, (5.60)

whenever
e2β

2p(ε)

(
1− a7

N(Δ)2α−1

)
< 1

and this is of course the case if

e2β
2p(ε)

(
1− a7

N(Δ)2α−1

)
≤

(
1− a7

2N(Δ)2α−1

)
. (5.61)

At this point, using the definition of N(Δ) and point (2) of Theorem
4.1, it is not difficult to see that there exists a positive constant a8(ε)
such that (5.61) holds if

β2p(ε) ≤ a8(ε)
Δ(2α−1)/α

|logF (0, Δ)|2α−1 . (5.62)

Condition (5.62) is equivalent to the first inequality in (5.25), for a
suitable choice of a1(ε) and Ľ(.).As a consequence, forN(Δ) sufficiently
large (i.e., for Δ sufficiently small)

1
2N(Δ)p(ε)

log E⊗2
(
e2p(ε)β

2
∑N(Δ)

n=1 δ
(1)
n δ

(2)
n

)
≤

≤ F (0, Δ)
2c(ε)p(ε)| logF (0, Δ)| log

(
2N(Δ)2α−1

a7

)
. (5.63)

Recalling Eq. (4.2) one sees that, if c(ε) is chosen large enough,

1
2N(Δ)p(ε)

log E⊗2
(
e2p(ε)β

2
∑N(Δ)

n=1 δ
(1)
n δ

(2)
n

)
≤ εF (0, Δ). (5.64)

Together with Eqs. (5.54), (5.56) and (5.58), this concludes the proof
of the theorem. �

Proof of Theorem 5.5. The proof is almost identical to that of
Theorem 5.3 and up to Eq. (5.58) no changes are needed. One has
however to be careful with the geometric bound (5.59): in this case, it
is not sufficient to replace α by 1/2, since the behavior at infinity of
the slowly varying function L(.) in (2.2) is here essential. The correct
bound in this case is (cf. [4, Lemma 3] and [43, Sec. 3.1])
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P⊗2

(
N∑

n=1

δ(1)n δ
(2)
n ≥ k

)
≤

(
1− a9

�(N)

)k
. (5.65)

for every N , for some a9 > 0. We recall that �(.) is the slowly varying
function, diverging at infinity, defined by (5.27). In analogy with Eq.
(5.60) one obtains then

E⊗2
(
e2p(ε)β

2
∑N(Δ)

n=1 δ
(1)
n δ

(2)
n

)
≤

(
1− e2β2p(ε)

(
1− a9

�(N(Δ))

))−1

(5.66)

whenever the right-hand side is positive. Choosing a2(ε) large enough
one sees that if condition (5.28) is fulfilled then

e2β
2p(ε)

(
1− a9

�(N(Δ))

)
≤

(
1− a9

2�(N(Δ))

)
(5.67)

and, in analogy with (5.63),

1
2N(Δ)p(ε)

log E⊗2
(
e2(ε)β

2
∑N(Δ)

n=1 δ
(1)
n δ

(2)
n

)
≤

≤ F (0, Δ)
2c(ε)p(ε)| logF (0, Δ)| log

(
2�(N(Δ))

a9

)
. (5.68)

From this estimate, for c(ε) sufficiently large one obtains again (5.64)
and as a consequence the statement of Theorem 5.5. �

5.6 Smoothing Effect of Disorder (Relevance for α > 1/2)

Section 5.3 was devoted to showing that, for α < αc, (weak) disorder is
irrelevant, in that it does not change the specific heat exponent ν and
in that the transition point coincides with the annealed one as long as
β is small. We saw also that for αc ≤ α < 1 quenched and annealed free
energies and critical points are very close (Theorems 5.3 and 5.5). This
might leave the reader with the doubt that disorder might be irrelevant
in this situation too. The purpose of the present section is to show that
this is not the case.

We start by recalling that via Theorem 4.1 and (2.17) we know that
F (β, hac (β)+Δ) � Δmax(1/α,1). This bound is however quite poor: if we
go back to (5.8) and we choose q = Δ/β2 we obtain

F (β, hac (β) +Δ) ≤ Δ2

2β2
(5.69)
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which is better, for Δ small and α > 1/2. The point is however that,
since one expects that hac (β) �= hc(β) in this situation, (5.69) does not
say anything about the critical behavior of the quenched system; for
this, we would need rather an upper bound on F (β, hc(β) +Δ). This
is just the content of the following result, which we state in the case of
Gaussian disorder:

Theorem 5.8. [26, 27] For every β > 0, α > 0 and Δ > 0 one has

F (β, hc(β) +Δ) ≤ (1 + α)
2β2

Δ2. (5.70)

Remark 5.9. Theorem 5.8 actually holds beyond the Gaussian case; for
instance, in the case of bounded variables ωn. In this case the statement
has to be modified in that the factor 2 in that the denominator in the
right-hand side of (5.70) is replaced by c := c(P), a constant which
depends only on the disorder distribution P, and the results holds only
provided Δ is sufficiently small: Δ ≤ Δ0(P), see [26].

Remark 5.10. An obvious implication of Theorem 5.8 is that ν ≤ 0 as
soon as β > 0. In this sense, this result is much reminiscent of what
was proven in [13, 14] about the specific heat exponent for the nearest-
neighbor disordered Ising ferromagnet.

In particular, Theorem 5.8 shows that the specific heat exponent
is modified by an arbitrary amount of disorder if α > αc: the phase
transition is smoothed by randomness if α > αc and becomes at least
of second order (the effect is particularly dramatic for α > 1, where the
transition is of first order for β = 0).

It is also interesting to compare Theorem 5.8 with the celebrated
result by M. Aizenman and J. Wehr [2] which states that first order
phase transition in spin systems with discrete spin-flip symmetry are
smoothed by disorder as long as the spatial dimension verifies d ≤ 2,
while the same holds for d ≤ 4 if the symmetry is continuous.

A less obvious consequence of Theorem 5.8 is the following:

Theorem 5.11. [41] Let β > 0 and 0 ≤ α < ∞. There exists c > 0
such that

lim
N→∞

EPβ,hc(β)
N,ω

(
|τ ∩ {1, . . . , N}| ≥ cN2/3 logN

)
= 0. (5.71)

Moreover, under the assumptions of Theorem 5.2, for β sufficiently
small

lim
N→∞

EPβ,hc(β)
N,ω

(
|τ ∩ {1, . . . , N}| ≥ cN2α/(1+α) logN

)
= 0. (5.72)
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This result should be read as follows. The fact that the transition is
at least of second order in presence of disorder implies already that
the Gibbs average of the contact fraction defined by (2.14) tends to
zero in the thermodynamic limit at the critical point. The additional
information provided by Theorem 5.11 are finite-N estimates on the
size of τ ∩ {1, . . . , N} at criticality. Whether the exponent 2/3 in Eq.
(5.71) is optimal or not is an intriguing open question.

Theorem 5.11 was proven in [41]3 (together with more refined finite-
size estimates on Eβ,hN,ω(|τ ∩{1, . . . , N}|) for h−hc(β) going to zero with
N), apart from Eq. (5.72) which is a consequence of [41, Th. 3.1] plus
Theorem 5.2 (cf. also Remark 3.2 in [41]).

Proof of Theorem 5.8 (sketch) For a fully detailed proof we refer to
[26]. In the case of Gaussian disorder a simpler proof is hinted at in
[27] and fully developed in [22, Section 5.4].

Here we give just a sketchy idea of why the transition cannot be of
first order when β > 0. Assume by contradiction that

F (β, hc(β) +Δ) ∼ cΔ for Δ→ 0+, (5.73)

and consider the system at the critical point (β, hc(β)). Divide the
system of size N into N/M blocks Bi of size M , with the idea
that 1 � M � N . For a given realization of ω mark the blocks
where the empirical average of ω, i.e., (1/M)

∑
n∈Bi

ωn equals approxi-
mately Δ/β. By standard large deviation estimates, there are typically
Nmarked := (N/M)e−MΔ

2/(2β2) such blocks, the typical distance be-
tween two successive ones being Dtyp :=MeMΔ

2/(2β2). It is a standard
fact that if we take M IID standard Gaussian variables and we condi-
tion on their empirical average to be δ, for M large they are (roughly
speaking) distributed like IID Gaussian variables of variance 1 and
average δ. Therefore, in a marked block the system sees effective ther-
modynamic parameters (βeff , heff ) := (β, hc(β)+Δ). Now we want to
show that the assumption (5.73) leads to the (obviously false) conclu-
sion that F (β, hc(β)) > 0. Indeed, let Sω be the set of τ configurations
such that:

• there are no points of τ in unmarked blocks
• the boundaries of all marked blocks belong to τ .

3 Theorem 3.1 in [41] is formulated in the case of bounded random variables ωn,
but it generalizes immediately to the Gaussian because the basic ingredient one
needs is the concentration inequality [41, Eq. (5.2)], which holds in the case of
Gaussian randomness as well.
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Note that Sω depends on disorder through the location and the number
of marked blocks, and that there is no restriction on τ inside marked
blocks. One has the obvious bound

FN (β, hc(β)) ≥ 1
N

E log E
(
e
∑N

n=1(βωn+h)δn1{τ∈Sω}δN
)
. (5.74)

But due to the definition of the set Sω, the restricted free energy
in the right-hand side of (5.74) gets (for M large) a contribution
Nmarked× (M/N)F (β, hc(β)+Δ) from marked blocks, and an entropic
term Nmarked/N × logK(Dtyp) from the excursions between marked
blocks. Summing the two contributions, recalling the asymptotic be-
havior (2.2) of K(.), the expression of Nmarked and Dtyp and taking
the N →∞ limit at M large but fixed one obtains then

F (β, hc(β) +Δ) ≥ e−MΔ2/(2β2)

(
F (β, hc(β) +Δ)− (1 + α)

Δ2

2β2

)
.

(5.75)

Since the left-hand side of (5.75) is zero, for Δ small and β > 0
this inequality is clearly in contradiction with the assumption (5.73)
that the transition if of first order (actually, even with the assumption
F (β, hc(β) +Δ) ∼ cΔy with y < 2).

6 Correlation Lengths and their Critical Behavior

From certain points of view, the localized region L is analogous to the
high-temperature phase of a spin system. Indeed, in this region one can
prove typical high-temperature results like the following: free energy
fluctuations are Gaussian on the scale 1/

√
N [3, 25], the infinite-volume

Gibbs measure is almost-surely unique and ergodic [9], the free energy
is infinitely differentiable, finite-size corrections to the infinite volume
free energy are of order O(1/N), and truncated correlation functions
decay exponentially with distance [25]. In this section we concentrate
on the last point, which turns out to be more subtle than expected, in
particular when one approaches the critical line.

In this section we assume that the random variables ωn are bounded,
because the results we mention have been proved in the literature un-
der this assumption. They should however reasonably extend to more
general situations, for instance to the Gaussian case.

In the following, Pβ,h∞,ω(.) will denote the infinite-volume Gibbs mea-
sure, defined as follows: first of all we modify definitions (2.6) and (2.8)
replacing

∑N
n=1(βωn + h)δn by
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�N/2�∑

n=−�N/2�
(βωn + h)δn,

where {ωn}n∈Z are IID random variables, and then for a local observ-
able f , i.e., a function of τ which depends only on τ ∩ I with I a finite
subset of Z, we let

Eβ,h∞,ω(f) := lim
N→∞

Eβ,hN,ω(f). (6.1)

Existence of the limit, in the localized phase, for almost every disorder
realization is proven in [25] (cf. also [9], where a DLR-like point of view
is adopted).4

The definition of the correlation length ξ contains always some de-
gree of arbitrariness, but conventional wisdom on universality states
that the critical properties of ξ, close to a second-order phase transi-
tion, are insensitive to the precise definition. There is however a sub-
tlety: in the case of disordered systems there are two possible definitions
of correlation lengths, which have no reason to have the same critical
behavior. Remaining for definiteness in the framework of our disor-
dered pinning models, one can first of all define a (disorder-dependent)
two-point function as

Cω(k, �) := Pβ,h∞,ω(k ∈ τ |� ∈ τ)−Pβ,h∞,ω(k ∈ τ). (6.2)

In words, Cω(k, �) quantifies how much the occurrence of � ∈ τ influ-
ences the occurrence the event k ∈ τ . It is then natural to define a
correlation length ξ as

1
ξ

:= − lim
k→∞

1
k

log |Cω(k, 0)|, (6.3)

provided the limit exists. Note that ξ depends on (β, h) and, in princi-
ple, on ω. One can however define a different correlation length, ξav, as

1
ξav

:= − lim
k→∞

1
k

log E|Cω(k, 0)|. (6.4)

4 One might give a different definition of the infinite-volume Gibbs measure, con-
sidering the original system (2.8) defined in {1, . . . , N} and taking a the N → ∞
limit of the average of local functions of τ ∩ I, with I a finite subset of N. In
other words, with the first procedure, Eq. (6.1), we are looking at the system in a
window which is situated in the bulk, very far away from both boundaries. On the
other hand, the second procedure is relevant if one wants to study the system in
the vicinity of one of the two boundaries (and very far away from the other one).
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In other words, ξ (respectively, ξav) is the length over which the two-
point function (respectively, the averaged two-point function) decays
exponentially. For simplicity, we will call ξ the typical (or quenched)
correlation length, and ξav the average correlation length, although it
is important to keep in mind that ξav is not the disorder-average of ξ
(indeed, in Section 6.3 we will see an example where ξ is almost-surely
constant but ξ �= ξav). It is interesting that in the case of the one-
dimensional quantum Ising chain with random transverse field studied
in [20], the two correlation lengths are believed, on the basis of a renor-
malization group analysis, to diverge at criticality with two different
critical exponents.

A simple application of Jensen’s inequality shows that ξav ≥ ξ. This
inequality can be interpreted on the basis of the following intuitive
argument. Divide all possible disorder realizations into sets Am where
the empirical average of ω in the region {1, . . . , k} is approximately m.
Of course, for m �= 0 Am is a large deviation-like event of probability
* exp(−km2/2). Conditionally on Am, the system sees a defect line
which is more attractive (if m > 0) or more repulsive (if m < 0) than it
should and therefore it is more localized (resp. more delocalized) in this
region than in the rest of the system. Therefore, conditionally on Am,
we can expect that Cω(k, 0) behaves like exp(−k/ξ(β, h+βm)). In other
words, we can argue that (looking only at the exponential behavior)

E Cω(k, 0) *
∫

dme−km
2/2e−k/ξ(β,h+βm) * ekmaxm{−m2/2−1/ξ(β,h+βm)}

(6.5)

for k large. Since ξ should diverge when the critical point is approached,
it is reasonably decreasing in h so that the value of m which realizes
the maximum is strictly negative. On the other hand, when we take
the limit without disorder average as in (6.3), the events Am with
m �= 0 cannot contribute, i.e., almost surely they do not occur for k
large enough, as follows from the Borel-Cantelli lemma.

6.1 Correlation Length of the Homogeneous Model

In the homogeneous case, β = 0, the infinite-volume Gibbs measure
can be explicitly described (cf. [22, Th. 2.3]): under P0,h

∞ (.), τ is a
homogeneous5, positively recurrent (for h > hc(0) = 0) renewal on Z

such that

5 That is, its law is invariant under translation on Z. For instance, P0,h
∞ (n, m

∈ τ) = P0,h
∞ (n + k, m + k ∈ τ) for every k ∈ Z.
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P0,h
∞ (inf{k > 0 : k ∈ τ} = n|0 ∈ τ) = K(n)e−F (0,h)neh =: K̃h(n)

(6.6)
and

P0,h
∞ (n ∈ τ) =

1
∑
m∈N

mK̃h(m)
.

Note that K̃h(.) is a probability on N (cf. Eq. (4.1) and the discussion
after it) with an exponential tail. What we are interested in is the
precise large-n behavior of

P0,h
∞ (n ∈ τ |0 ∈ τ)− 1

∑
m∈N

mK̃h(m)
,

i.e., a refinement of the renewal theorem (which simply states that this
quantity tends to zero for n→∞).

Let us for a moment widen our scope and consider a homogeneous,
positively recurrent renewal, with law P̃, such that the law of the dis-
tance between two successive points, denoted by K̃(.), has exponential
tail: say,

lim
n→∞

1
n

log K̃(n) = −z < 0. (6.7)

We do not require for the moment that K̃(.) is given by (6.6) with K(.)
in the class (2.2). It is known (cf. for instance [6, Chapter VII.2] and
[38]) that, under condition (6.7), there exist r > 0 and C < ∞ such
that

∣∣∣∣∣P̃(n ∈ τ |0 ∈ τ)− 1
∑
m∈N

mK̃(m)

∣∣∣∣∣ ≤ Ce
−rn. (6.8)

However, the relation between z and the largest possible r in Eq. (6.8),
call it rmax, is not known in general. A lot of effort has been put by
the queuing theory community in investigating this point, and in vari-
ous special cases it has been proven that rmax ≥ z (see for instance [7],
where power series methods are employed and explicit upper bounds on
the prefactor C are given). In even more special cases, for instance when
P̃ is the law of the return times to a particular state of a Markov chain
with some stochastic ordering properties, the optimal result rmax = z
is proved (for details, see [36, 41], which are based on coupling tech-
niques). However, the equality rmax = z cannot be expected in general.
In particular, if K̃(.) is a geometric distribution,
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K̃(n) =
e−nc

ec − 1

with c > 0, then one sees easily that the left-hand side of (6.8) vanishes
for every n ∈ N so that rmax = ∞, while z = c. On the other hand, if
for instance K̃(1) = K̃(2) = 1/2 and K̃(n) = 0 for n ≥ 3, then z = +∞
while r is finite. These and other nice counter-examples are discussed
in [7].

In view of this situation, it is highly non-trivial that, restricting to
our original class of renewals, the following holds:

Theorem 6.1. [23] Let K̃h(.) be given by (6.6) with K(.) satisfying
(2.2) for some α > 0 and slowly varying L(.). Then, there exists h0 > 0
such that, for every 0 < h < h0,

lim sup
n→∞

1
n

log

∣∣∣∣∣P
0,h
∞ (n ∈ τ |0 ∈ τ)− 1

∑
m∈N

mK̃h(m)

∣∣∣∣∣ = −F (0, h) (6.9)

and, more precisely,

P0,h
∞ (n ∈ τ |0 ∈ τ)− 1

∑
m∈N

mK̃h(m)
n→∞∼ Q(n)e−F (0,h)n

4[sinh(h/2)]2
(6.10)

with Q(.) such that
∑n
j=1Q(j) n→∞∼ L(n)/(αnα).

It is important to emphasize that, even under assumption (6.6), this
result would be false without the restriction of h small.

In the light of (6.9), it is quite natural to expect (and in some case
this can be proven, see Section 6.3) that in presence of disorder ξ is
still proportional to the inverse of the free energy, at least close to the
critical point. But then, what about ξav?

6.2 μ versus F

To answer this question, we abandon for a while the correlation length
and we discuss the relation between free energy and another quantity
which, due to lack of a standard name, we will call simply μ. This
was first introduced, to my knowledge, in [3] in the context of random
heteropolymers:

μ(β, h) = − lim
N→∞

1
N

log E

[
1

ZN,ω(β, h)

]
(6.11)
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Existence of the limit in our context is easily proven by super-additivity
of logZN,ω(β, h) (see [25, Th. 2.5]). An argument similar to (2.12) gives
immediately μ ≥ 0 while a simple application of Jensen’s inequality
shows that μ(β, h) ≤ F (β, h). However, much more than this is true:

Theorem 6.2. [41] For every β > 0 there exists 0 < c3(β), c4(β) <∞
such that

0 < c3(β)
F (β, h)2

∂hF (β, h)
< μ(β, h) < F (β, h) (6.12)

if 0 < h− hc(β) ≤ c4(β).

In particular, the bounds in (6.12) show that also μ vanishes contin-
uously at the critical point, like the free energy. If we call ηF and
ημ the critical exponents associated to the vanishing of F and μ for
h→ hc(β)+, Theorem 6.2 implies the following bounds:

(2 ≤)ηF ≤ ημ ≤ ηF + 1, (6.13)

the inequality in parentheses being valid for β > 0 thanks to Theorem
5.8. Just to give a flavor of why μ is relevant in the description of the
system let us cite the following result. Define first of all ΔN as the
largest gap between points of τ in the system of length N :

ΔN := max
1≤i<j≤N

{|i− j| : i ∈ τ, j ∈ τ, {i+ 1, . . . , j− 1}∩ τ = ∅}. (6.14)

Then,

Theorem 6.3. [25] Let (β, h) ∈ L. For every ε > 0,

lim
N→∞

Pβ,hN,ω

(
1− ε
μ(β, h)

≤ ΔN
logN

≤ 1 + ε
μ(β, h)

)
= 1 in probability. (6.15)

6.3 Correlation Lengths and Free Energy

To my knowledge, the only case where ξ and ξav can be fully char-
acterized even in presence of disorder is the one where K(.) is the
law of the first return to zero of the one-dimensional SRW condi-
tioned to be non-negative. In other words, let {Sn}n=0,1,... be the SRW
on Z started at S0 = 0 and let PSRW (.) denote its law. We define
KSRW,+(n) := PSRW (inf{k > 0 : Sk = 0} = 2n|Si ≥ 0 ∀i). Go back to
Section 2.6 for a motivation of this example as a model of wetting of a
(1 + 1)-dimensional substrate. In this case, one has the following



Disordered Pinning Models 171

Theorem 6.4. [41] Let K(.) = KSRW,+(.) and � ∈ Z. For every β ≥ 0
and h > hc(β),

1
ξav

= − lim
k→∞

1
k

log E Cω(�+ k, k) = μ(β, h) (6.16)

and, P(dω)–a.s.,

1
ξ

= − lim
k→∞

1
k

log Cω(�+ k, k) = F (β, h). (6.17)

With respect to Theorem 6.1, this result is much less sharp in that it
catches only the exponential behavior of the two-point function. How-
ever, note that in Theorem 6.4 h− hc(β) is not required to be small as
in Theorem 6.1. Note also that in Eqs. (6.16), (6.17) we have not taken
the absolute value of Cω(� + k, k): this is because, in this particular
case, one can prove that this quantity is non-negative [41]. Finally ob-
serve that, in view of (6.12), the two correlation lengths are different.
It would be extremely interesting to know whether the two associated
critical exponents ηF , ημ coincide or not.

Remark 6.5. Theorem 6.4 does not coincide exactly with [41, Th. 3.5],
e.g., because in the latter Pβ,h∞,ω(.) is the infinite-volume Gibbs measure
obtained from the system defined in {1, . . . , N} letting N → ∞ (cf.
footnote 4). However, the proof of [41] extends without difficulties to
the result we stated above. We remark also that the theorem holds as
well in the case where K(n) = KSRW (n) := PSRW (inf{k > 0 : Sk =
0} = 2n), i.e., the law of the first return to zero of the unconditioned
SRW. This follows from the discussion in Section 2.6 and from the fact
that KSRW (n) = 2KSRW,+(n).

Proof of Theorem 6.4 (sketch). The proof of Theorem 6.4 is based
on a coupling argument. For simplicity let P+(.) := PSRW (.|S ≥ 0).
One can then rewrite the two-point function (6.2) as

Cω(k, �) = lim
N→∞

1
ZN,ω(β, h)2

×

×E+,⊗2

[
e
∑N/2

n=−N/2(βωn+h)(1
{S

(1)
n =0}

+1
{S

(2)
n =0}

)
(
1{S

(1)
k =0}−1{S

(2)
k =0}

)
|S(1)


 =0
]
,

(6.18)

where S(1), S(2) are independent with law P+. Since the SRW condi-
tioned to be non-negative is a Markov chain, the expectation in the
right-hand side clearly vanishes if we condition on the event that there
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exists � < i < k such that S(1)
i = S

(2)
i . But (and here we use explicitly

the condition Si ≥ 0 and that two SRW trajectories which cross each
other do necessarily intersect), if the complementary event happens
then either S(1) or S(2) has no zeros in the interval {�+ 1, . . . , k − 1}.
As a consequence, one obtains

E Cω(k, 0) ≤ 2EPβ,h∞,ω(τ ∩ {1, . . . , k − 1} = ∅) (6.19)

and it is not difficult to deduce from (6.11) that this probability van-
ishes like exp(−kμ(β, h)) for k → ∞. For the opposite bound and for
the proof of (6.17) we refer to [41].

In the general case where P is not necessarily the law of the returns
of the SRW (or, in general, of any Markov chain), the available results
on correlation lengths in presence of disorder are much less sharp and,
above all, only correlation length upper bounds are known. At present,
the best one can prove in general about average correlation length is
the following:

Theorem 6.6. [42] Let ε > 0 and (β, h) ∈ L. There exists C1 :=
C1(ε, β, h) > 0 such that, for every k ∈ N,

E |Cω(�+ k, �)| ≤ 1
C1μ(β, h)1/C1

exp
(
−k C1 μ(β, h)1+ε

)
. (6.20)

The constant C1(ε, β, h) does not vanish at the critical line: for every
bounded subset B ⊂ L one has inf(β,h)∈B C1(ε, β, h) ≥ C1(B, ε) > 0.

Remark 6.7. The necessity of introducing ε > 0 (i.e., of weakening the
upper bound with respect to the expected one) is probably of technical
nature, as appears from the fact that for β = 0 Theorem 6.6 does not
reproduce the sharp results (6.9) which hold for the homogeneous case.

Observe that Theorem 6.6 is more than just an upper bound on ξav.
Indeed, thanks to the bound on the prefactor in front of the exponential,
Eq. (6.20) says that the exponential decay, with rate at least of order
μ1+ε, starts as soon as k � μ−1−ε| logμ|. This observation reinforces
the meaning of Eq. (6.20) as an upper bound of order μ−1 on the
correlation length of disorder-averaged correlations functions.

About the typical correlation length the following can be proven:

Theorem 6.8. [42] Let ε > 0 and (β, h) ∈ L. One has for every k ∈ N

|Cω(k, 0)| ≤ C2(ω) exp
(
−k C1 F (β, h)1+ε

)
, (6.21)

where C1 is as in Theorem 6.6, while C2(ω) := C2(ω, ε, β, h) is an
almost surely finite random variable.
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The proof of Theorems 6.6 and 6.8 relies on a rather involved cou-
pling/comparison argument. In simple (and imprecise) words, one first
approximates K(.) with a new law K̃(.) which is the law of the returns
to zero of a Markov process with continuous trajectories (defined in
terms of a Bessel process), and at that point the coupling argument of
last section can be applied. We refer to [42] for full details.

A Two Tauberian Results

For completeness, we include without proof two Tauberian theorems
(i.e., results about the relation between the asymptotic behavior of a
function and of its Laplace transform) which we used in Section 5.5.
Given a function Q : N → R, we define for s ∈ R

Q̂(s) :=
∑

n∈N

e−nsQ(n)

whenever the sum converges.
We begin with a (quite intuitive) fact:

Theorem A.1. [8, Proposition 1.5.8] If �(.) is slowly varying and
γ > −1 then

N∑

n=1

nγ�(n) N→∞∼ Nγ+1

γ + 1
�(N). (A.1)

Next we state Karamata’s Tauberian theorem [8, Th. 1.7.1] which
for our purposes may be formulated as follows:

Theorem A.2. Assume that Q(n) ≥ 0 for every n ∈ N, that �(.) is
slowly varying and that ρ ≥ 0. The following are equivalent:

Q̂(s)
s↘0∼ �(1/s)

sρ
(A.2)

and
N∑

n=1

Q(n) N→∞∼ Nρ
�(N)

Γ (1 + ρ)
. (A.3)

Recall that the function Γ (z) can be defined, for z > 0, as

Γ (z) =
∫ ∞

0
tz−1e−tdt.
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Finally, a theorem relating the Laplace transform of a law on the
half-line to its integrated tail (cf. [8, Corollary 8.1.7]):

Theorem A.3. Let X be an integer-valued random variables with law
P and Q(n) := P(X = n), �(.) a slowly varying function and
0 ≤ α < 1. The following are equivalent:

1− Q̂(s)
s↘0∼ sα�(1/s) (A.4)

and

P(X > n) =
∑

j>n

Q(j) n→∞∼ �(n)
nαΓ (1− α)

. (A.5)
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1 Introduction

In these lectures we will discuss Markov processes with a particular
interest for a phenomenon called metastability. Basically this refers to
the existence of two or more time-scales over which the system shows
very different behaviour: on the short time scale, the systems reaches
quickly a “pseudo-equilibrium” and remains effectively in a restricted
subset of the available phase space; the particular pseudo-equilibrium
that is reached will depend on the initial conditions. However, when
observed on the longer time scale, one will occasionally observe transi-
tions from one such pseudo-equilibrium to another one. In many cases
(as we will see) there exists one particular time scale for each such
pseudo-equilibrium; in other cases of interest, several, or even many,
such distinct pseudo-equilibria exist having the same time scale of exit.
Mathematically speaking, our interest is to derive the (statistical) prop-
erties of the process on these long time scales from the given descrip-
tion of the process on the microscopic time scale. In principle, our aim
should be an effective model for the motion at the long time scale on
a coarse grained state space; in fact, disregarding fast motion leads us
naturally to consider a reduced state space that may be labeled in some
way by the quasi-equilibria.

The type of situation we sketched above occurs in many situations in
nature. The classical example is of course the phenomenon of metasta-
bility in phase transitions: if a (sufficiently pure) container of water is
cooled below freezing temperature, it may remain in the liquid state for
a rather long period of time, but at some moment the entire container
freezes extremely rapidly. In reality, this moment is of course mostly
triggered by some slight external perturbation. Another example of
the same phenomenon occurs in the dynamics of large bio-molecules,
such as proteins. Such molecules frequently have several possible spa-
tial conformations, transitions between which occur sporadically on
often very long time scales. Another classical example is metastability
in chemical reactions. Here reactants oscillate between several possi-
ble chemical compositions, sometimes nicely distinguished by different
colours. This example was instrumental in the development of stochas-
tic models for metastability by Eyring, Kramers and others [21, 30].
Today, metastable effects are invoked to explain a variety of diverse
phenomena such as changes in global climate systems both on earth
(ice-ages) and on Mars (liquid water presence), structural transitions
on eco- and oeco systems, to name just a few examples.

Most modeling approaches attribute metastability to the presence
of some sort of randomness in the underlying dynamics. Indeed, in
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the context of purely deterministic systems, once several equilibrium
positions for the dynamics exist, transitions between such equilibria
are impossible. It is then thought that metastable effects occur due to
the presence of (small) random perturbations that should reflect the
influence of unresolved degrees of freedom on very fast scales.

Mathematically, metastability is studied in a number of contexts of
which we mention the following:

(i) Small random perturbations of dynamical systems. Here
one considers a classical dynamical system in R

d with some added
small stochastic noise term. This leads to a stochastic differential
equation of the type

dxε(t) = fε(xε(t))dt+
√
εgε(xε(t))dW (t) (1.1)

Such systems have been extensively investigated e.g. in the work
of Freidlin and Wentzell [23] and Kifer [28]. They have their origin
in the work of Kramers [30].

(ii) Markov chains with exponentially small transition rates.
Here we are dealing with Markov chains with discrete state space
that are almost deterministic in the sense that the transition prob-
abilities are either exponentially close to one or exponentially close
to zero, in some small parameter ε. Such systems emerge in the
analysis of Wentzell and Freidlin and are studied there. They found
renewed interest in the context of low temperature dynamics for
lattice models in statistical mechanics [35, 36, 1] and also in the
analysis of stochastic algorithms for the solution of optimisation
problems (“simulated annealing”) [14, 13]. Recent result using the
methods outlined here can be found in [11, 6].

(iii) Glauber dynamics of mean field [12, 32, 22, 7] or lattice
[37] spin systems. Metastability in stochastic dynamics of spin
systems is not restricted to the zero temperature limit, but hap-
pens whenever there is a first order phases transition. At finite
temperature, this is much harder to analyse in general. The rea-
son is that it is no longer true that the process on the micro-scale
is close to deterministic, but that such a statement may at best
be meaningful on a coarse grained scale. Mean field models lend
themselves to such a coarse graining in a particularly nice way,
and in many cases it is possible to construct an effective coarse
grained Markovian dynamics that then is in some sense similar to
the problems mentioned in (i).
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The traditional methods to analyse such systems are

(a) Large deviations. Wentzell and Freidlin introduced the method
of large deviations on path space in order to obtain a rigorous
analysis of the probability for the deviations of solutions of the
stochastic differential equations (1.1) from the solutions of the de-
terministic limiting equations. This method has proven very robust
and has been adapted to all of the other contexts. The price to pay
for generality is limited precision. In general, only the exponential
rates of probabilities can be computed precisely. Frequently this is
good enough in applications, but sometimes more precise results
are desirable. In certain cases, refined estimates could, however, be
obtained [19].

(b) Asymptotic perturbation theory. As we will see in detail in the
course of these lectures, many key quantities of interest concern-
ing Markov processes can be characterized as solutions of certain
systems of linear equations, that are, or are structurally similar to,
boundary value problems in partial differential equations. In par-
ticular cases of stochastic differential equations with small noise,
or discrete versions thereof, one may use methods from perturba-
tion theory of linear differential operators with the variance of the
noise playing the rôle of a small parameter. This has been used
widely in the physics literature on the subject (see e.g. the book
by Kolokoltsov [29] for detailed discussions and further reference),
however, due to certain analytic difficulties, with the exception of
some very particular cases, a rigorous justification of these meth-
ods was not given. A further shortcoming of the method is that it
depends heavily on the particular types of Markov processes stud-
ied and does not seem to be universally applicable. Very recently,
Helffer, Nier and Klein have been able to develop a new analytic
approach that allows to develop rigorous asymptotic expansion for
the small eigenvalues for diffusion processes [26, 25, 34].

(c) Spectral and variational methods. Very early on it was noted
that there should be a clear signature of metastability in the nature
of the generator (or transition matrix) of the Markov process con-
sidered. To see this, note that if the Markov process was effectively
reducible, i.e. had instead of quasi invariant sets there were truly in-
variant sets, then the generator would have a degenerate eigenvalue
zero with multiplicity equal to the number of invariant sets. More-
over, the eigenfunctions could be chosen as the indicator functions
of these sets. It is natural to believe that a perturbed version of this
picture remains true in the metastable setting. The computation
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of small eigenvalues and “spectral gaps” has thus been a frequent
theme in the subject. Computations of eigenvalues can be done
using variational representations of eigenvalues, and a number of
rather precise results could be achieved in this way, e.g. in the work
of Mathieu [31] and Miclo [33].

In these lectures I will explain an approach to metastability that
is in some sense mixing ideas from (ii) and (iii) and that proves to be
applicable in a wide variety of situations. One of its goals is to obtain
a precise characterization of metastability in terms of spectral char-
acteristics, and in particular a quantitatively precise relation between
eigenvalues and physical quantities such as exit times from metastable
domains. The main novel idea in this approach, that was developed in
collaboration with M. Eckhoff, V. Gayrard, and M. Klein over the last
years [7, 8, 9, 10] (see also the reviews [3, 4]) is the systematic use of
the so called “Newtonian capacity”, a fundamental object in potential
theory, and its variational representation. This will allow us to get in a
rigorous way results that are almost as precise as those obtained from
perturbation theory in a rather general context. In particular, we will
see that certain structural relations between capacities, exit times and
spectral characteristics hold without further model assumptions under
some reasonable assumptions on what is to be understood by the notion
of metastability.

In these lectures I will focus on the general methodology of this
approach. In Sections 3 and 4 I outline the universal relations between
capacity and metastable exit times in the context of discrete Markov
chains (where this approach is fully developed), and in the same context
the relation to spectral theory is explained in Section 6. These results
are “model independent”, in certain sense. To apply these to specific
models, one needs to compute certain capacities. Here, too, we have
developed a rather clear strategy of how to do this, which is explained
in Section 6 and exemplified in the case of the Curie-Weiss model.

The real test of any method comes when it is applied in non-trivial
examples. The lecture notes of Frank den Hollander in this volume [20]
present some of these in the context of Glauber and Kawasaki dynamics
of lattice gases. Besides apparent successes, there remain many chal-
lenges and some directions of ongoing research will be exposed in his
lectures.

Acknowledgment. The results described in these lectures outline the
approach to metastability developed in collaboration with M. Eckhoff,
V. Gayrard, and M. Klein, and further elaborated with A. Bianchi,
D. Ioffe, F. den Hollander, F. Manzo, F. Nardi, and C. Spitoni.



182 A. Bovier

Section 5.4 contains unpublished material based on a collaboration
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2 Basic Notions from the Theory of Markov Processes

A stochastic process {Xt}t∈I , Xt ∈ Γ is called a Markov process with
index set I and state space Γ , if, for any collection t1 < · · · < tn < t∈I,

P [Xt ∈ A|Xtn = xn, . . . , Xt1 = x1] = P [Xt ∈ A|Xtn = xn] (2.1)

for any Borel set A ∈ B(Γ ). Here I is always an ordered set, in fact
either N or R. In the former case we call call the process a discrete
time Markov chain, the second case is referred to as a continuous time
Markov process. A further distinction concerns the nature of the state
space Γ . This may be finite, countable, or uncountable (‘continuous’).

A key quantity in all cases is the family of probability measures,
p(s, t, x, ·), on (Γ,B(Γ )),

p(s, t, x,A) ≡ P (Xt ∈ A|Xs = x) , (2.2)

for any Borel set A ∈ B(Γ ). By (2.1), p(t, s, x, ·) determines uniquely
the law of the Markov process. In fact, any family of probability mea-
sures p(s, t, x, ·) satisfying

p(s, s, x, ·) = δx(·) (2.3)

and the relation for s < t′ < t,

p(s, t, x, ·) =
∫
p(s, t′, x, dz)p(t′, t, z, ·) (2.4)

defines a Markov process. If p(s, t, x, ·) is a function of t − s only, we
call the Markov process time-homogeneous and set

p(s, t, x, ·) ≡ pt−s(x, ·) (2.5)

We will only be concerned with time-homogeneous Markov processes
henceforth. In the case of discrete time the transition kernel is fully
determined by the one-step transition probabilities, called transition
matrix in the discrete space case,

p(x, ·) ≡ p1(x, ·) (2.6)
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If space is discrete, we can of course simply specify the atoms, p(x, y),
of this measure; this object is then called the transition matrix.

Property (2.4) is often called the semi-group property and the tran-
sition kernel pt(x, ·) is called a Markov semi-group. In continuous time,
one defines the generator (of the semi-group)1

L ≡ lim
t↓0
t−1(1− pt) (2.7)

It then follows that conversely

pt = e−tL (2.8)

We will find it sometimes convenient to define a “generator” also in the
discrete time case by setting

L ≡ 1− p1 (2.9)

We will frequently think of pt and L as operators acting on functions
f on Γ as

ptf(x) ≡
∫

Γ
pt(x, dy)f(y) (2.10)

respectively on measures ρ on Γ , via

ρpt(·) ≡
∫

Γ
ρ(dx)pt(x, ·) (2.11)

If ρ0(·) = P(X0 ∈ ·), then

ρ0pt(·) ≡ ρt(·) = P(Xt ∈ ·) (2.12)

ρt is called the law of the process at time t started in ρ at time 0. It is
easy to see from the semi-group property that ρt satisfies the equation

∂

∂t
ρt(x, ·) = −ρtL(x, ·) (2.13)

resp., in the discrete time case

ρt+1(x, ·) = −ρtL(x, ·) (2.14)

This equation is called the Focker-Planck equation. A probability mea-
sure μ on Γ is called an invariant measure for the Markov process Xt
if it is a stationary solution of (2.13), i.e. if

μpt = μ (2.15)

1 In the literature, one usually defines the generator with an extra minus sign.
I prefer to work with positive operators.
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for all t ∈ I. Note that (2.15) is equivalent to demanding that

μL = 0 (2.16)

A priori the natural function space for the action of our operators is
L∞(Γ ) for the action from the left, and locally finite measures for the
action on the right. Given an invariant measure μ, there is, however,
also a natural extension to the space L2(Γ, μ) . In fact, pt is a contrac-
tion on this space, and L is a positive operator. To see this, just use
the Schwartz inequality to show that
∫
μ(dx)

(∫
pt(x, dy)f(y)

)2

≤ μ(dx)
∫
pt(x, dy)f(y)2 =

∫
μ(dy)f(y)2

(2.17)

L is in general not a bounded operator in L2, and its domain is some-
times just a dense subspaces.

Within this L2-theory, it is natural to define the adjoint operators
p∗t and L∗ via

∫
μ(dx)g(x)p∗t f(x) ≡

∫
μ(dx)f(x)p∗t g(x) (2.18)

respectively
∫
μ(dx)g(x)L∗f(x) ≡

∫
μ(dx)f(x)Lg(x) (2.19)

for any pair of functions f, g ∈ L2(Γ, μ). We leave it as an exercise to
show that p∗t and L∗ are Markov semi-groups, resp. generators, when-
ever μ is an invariant measure. Thus they define an adjoint or reverse
process. In the course of these lectures we will mainly be concerned
with the situation where pt and L are self-adjoint, i.e. when pt = p∗t
and L = L∗. This will entrain a number of substantial simplifications.
Results on the general case can often be obtained by comparison with
symmetrized processes, e.g. the process generated by (L+L∗)/2. Note
that whenever a Markov generator is self-adjoint with respect to a mea-
sure μ, then this measure is invariant (Exercise!). We call Markov pro-
cesses whose generator is self-adjoint with respect to some probability
measure reversible. The invariant measure is then often called the re-
versible measure (although I find this expression abusive; symmetrizing
measure would be more appropriate).

Working with reversible Markov chains brings the advantage to
make full use of the theory of self-adjoint operators, which gives far
richer results then in the general case. In many applications one can
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work by choice with reversible Markov processes, so that in practical
terms this restriction is not too dramatic.

Hitting Times

Henceforth we denote by Px the law of the process conditioned on
X0 = x. For any (measurable) set D ⊂ Γ we define the hitting time
τD as

τD ≡ inf (t > 0 : Xt ∈ D) (2.20)

Note that τD is a stopping time, i.e. the random variable τD depends
only on the behaviour of Xt for t ≤ τD. Denoting by Ft sigma-algebra
generated by {Xs}0≤s≤t, we may say that the event {τD ≤ t} is mea-
surable with respect to Ft.

3 Discrete Space, Discrete Time Markov Chains

We will now turn to our main tools for the analysis of metastable
systems. To avoid technical complications and to focus on the key ideas,
we will first consider only the case of discrete (or even finite) state space
and discrete time (the latter is no restriction). We set p1(x, y) = p(x, y).
We will also assume that our Markov chain is irreducible, i.e. that for
any x, y ∈ Γ , there is t ∈ N such that pt(x, y) > 0. If in addition Γ
is finite, this implies the existence of a unique invariant (probability)
measure μ. We will also assume the our Markov chain is reversible.

3.1 Equilibrium Potential, Equilibrium Measure,
and Capacity

Given two disjoint subsets A,D, of Γ , and x ∈ Γ , we are interested in

Px[τA < τD] (3.1)

One of our first, and as we will see main tasks is to compute such
probabilities. We consider first the case of discrete time and space.

If x �∈ A∪D, we make the elementary observation that the first step
away leads either to D, and the event {τA < τD} fails to happen, or
to A, in which case the event happens, or to another point y �∈ A ∪D,
in which case the event happens with probability Py[τA < τD]. Thus

Px[τA < τD] =
∑

y∈A
p(x, y) +

∑

y �∈A∪D
p(x, y)Py[τA < τD] (3.2)
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We call an equation based on this reasoning a forward equation. Note
that we can write this in a nicer form if we introduce the function

hA,D(x) =

⎧
⎪⎨

⎪⎩

Px[τA < τD], ifx �∈ A ∪D
1, ifx ∈ A
0, ifx ∈ D

(3.3)

Then (3.2) implies that for x �∈ A ∪D,

hA,D(x) =
∑

y∈Γ
p(x, y)hA,D(y) (3.4)

In other words, the function hA,D solves the boundary value problem

LhA,D(x) = 0, x ∈ Γ\(A ∪D),
hA,D(x) = 1, x ∈ A,
hA,D(x) = 0, x ∈ D. (3.5)

If we can show that the problem (3.3) has a unique solution, then we
can be sure to have reduced the problem of computing probabilities
Px[τA < τD] to a problem of linear algebra.

Proposition 3.1. Let Γ be a finite set, and let A,D ⊂ Γ be non-
empty. Assume that P is irreducible, i.e. that for any x, y ∈ Γ , there
exists n < ∞ such that pn(x, y) > 0. Then the problem (3.3) has a
unique solution.

The function hA,D is called the equilibrium potential of the capacitor
A,B. The fact that

Px[τA < τD] = hA,D(x) (3.6)

for x ∈ Γ\(A∪D) is the first fundamental relation between the theory
of Markov chains and potential theory.

The next question is what happens for x ∈ D? Naturally, using the
same reasoning as the one leading to (3.2), we obtain that

Px[τA < τD] =
∑

y∈A
p(x, y) +

∑

y∈Γ\(A∪D)

p(x, y)Py[τA < τD]

=
∑

y∈Γ
p(x, y)hA,D(y) (3.7)

It will be even more convenient to define, for all x ∈ Γ

eA,D(x) ≡ −(LhA,D)(x) (3.8)
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Then

Px[τA < τD] =

⎧
⎪⎨

⎪⎩

hA,D(x), ifx ∈ Γ\(A ∪D)
eA,D(x), ifx ∈ D
1− eD,A(x) ifx ∈ A

(3.9)

Let us now define the capacity of the capacitor A,D as

cap(A,D) ≡
∑

x∈D
μ(x)eA,D(x) (3.10)

By the properties of hA,D it is easy to see that we can write
∑

x∈D
μ(x)eA,D(x) =

∑

x∈Γ
μ(x)(1− hA,D(x))(−LhA,,D)(x) (3.11)

=
∑

x∈Γ
μ(x)hA,D(x)(LhA,,D)(x)−

∑

x∈Γ
μ(x)(LhA,,D)(x)

Since μ(x)L = 0, we get that

cap(A,D) =
∑

x∈Γ
μ(x)hA,D(x)(LhA,,D)(x) ≡ Φ(hA,D) (3.12)

where

Φ(h) ≡
∑

x∈Γ
μ(x)h(x)Lh(x) =

1
2

∑

x,y

μ(x)p(x, y) (h(x)− h(y))2 (3.13)

is called the Dirichlet form associated to the Markov process with gen-
erator L. In fact, we will sometimes think of the Dirichlet form as the
quadratic form associated to the generator and write

Φ(f, g) ≡ (f, Lg)μ =
1
2

∑

x,y

μ(x)p(x, y) (f(x)− f(y)) (g(x)− g(y)) .

(3.14)

The representation of the capacity in terms of the Dirichlet form will
turn out to be of fundamental importance. The reason for this is the
ensuing variational representation, known as the Dirichlet principle:

Theorem 3.2. Let HAD denote the space of functions

HAD ≡ {h : Γ → [0, 1], h(x) = 1, x ∈ A, h(x) = 0, x ∈ D} (3.15)

Then
cap(A,D) = inf

h∈HA
D

Φ(h) (3.16)

Moreover, the variational problem (3.15) has a unique minimizer that
is given by the equilibrium potential hA,D.
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Proof. Differentiating Φ(h) with respect to h(x) (for x ∈ Γ\(A ∪ D))
yields

∂

∂h(x)
Φ(h) = 2μ(x)Lh(x) (3.17)

Thus if h minimizes Φ, it must be true that Lh(x) = 0. Since we have
already seen that the Dirichlet problem (3.3) has a unique solution, the
theorem is proven.

While in general the capacity is a weighted sum over certain prob-
abilities, if we choose for the set D just a point x ∈ Γ , we get that

Px[τA < τx] =
1
μ(x)

cap(A, x)

We will call these quantities sometimes escape probabilities. We see that
they have, by virtue of Theorem 3.2 a direct variational representation.
They play a crucial rôle in what will follow. Let us note the fact that
cap(x, y) = cap(y, x) implies that

μ(x)Px[τy < τx] = μ(y)Py[τx < τy] (3.18)

which is sometimes helpful to get intuition. Note that this implies in
particular that

Px[τy < τx] ≤
μ(y)
μ(x)

which is quite often already a useful bound (provided of course μ(y) <
μ(x)).

3.2 The One-Dimensional Chain

We will now consider the example of a one-dimensional nearest neighbor
random walk (with inhomogeneous rates). For reasons that will become
clear later, we introduce a parameter ε > 0 and think of our state space
as a one-dimensional “lattice” of spacing ε, that is we take Γ ⊂ εZ, and
transition probabilities

p(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

√
μ(y)
μ(x)g(x, y), if y = x± ε,

1− p(x, x+ ε)− p(x, x− ε), ifx = y,
0, else

(3.19)

where μ(x) > 0, and g is such that p(x, x) ≥ 0.



Metastability 189

Equilibrium Potential.

Due to the one-dimensional nature of our process, we only equilibrium
potentials we have to compute are of the form

hb,a(x) = Px[τb < τa] (3.20)

where a < x < b. The equations (3.5) then reduce to the one-
dimensional discrete boundary value problem

p(x, x+ ε)(h(x+ ε)−h(x))+p(x, x− ε)(h(x− ε)−h(x)) = 0, a < x < b
h(a) = 0
h(b) = 1

We can solve this by recursion and get

h(x) =

∑x
y=a+ε

1
μ(y)

1
p(y,y−ε)∑b

y=a+ε
1
μ(y)

1
p(y,y−ε)

(3.21)

Capacities.

Given the explicit formula for the equilibrium potential, we can read-
ily compute capacities. Without going into the detailed computations,
I just quote the result:

cap(a, b) =
1

∑b
y=a+ε

1
μ(y)

1
p(y,y−ε)

(3.22)

Remark 3.3. Formula (3.22) suggests another common “electrostatic”
interpretation of capacities, namely as “resistances”. In fact, if we in-
terpret μ(x)p(x, x− ε) = μ(x− ε)p(x− ε, x) as the conductance of the
“link” (resistor) (x−ε, x), then by Ohm’s law, formula (3.22) represents
the conductance of the chain of resistors from a to b. This interpreta-
tion is not restricted to the one-dimensional chain, but holds in general
for reversible Markov chains. The capacity of the capacitor (A,D) may
then be seen as the conductance of the resistor network between the
two sets. In this context, the monotonicity properties of the capacities
obtain a very natural interpretation: removing a resistor or reducing its
conductivity can only decrease the conductivity of the network. There
is a very nice account on the resistor network interpretation of Markov
chains and some of its applications in a book by Doyle and Snell.
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3.3 Mean Hitting Times

Our next task is to derive formulas for the mean values of hitting times
τA. As in Section 3.1 we first derive a forward equation for ExτA by
considering what can happen in the first step:

ExτA =
∑

y∈A
p(x, y) +

∑

y �∈A
p(x, y)(1 + EyτA) (3.23)

if x �∈ A. If we define a function

wA(x) ≡
{

ExτA, ifx ∈ Γ\A
0, ifx ∈ A

(3.24)

we see that (3.23) can be written in the nicer form

wA(x) =
∑

y∈Γ
p(x, y)wA(y) + 1 (3.25)

for x �∈ A; i.e. wA solves the inhomogeneous Dirichlet problem

LwA(x) = 1, x ∈ G\A
wA(x) = 0, x ∈ A (3.26)

Note that for x ∈ A we can compute ExτA by considering the first step:

ExτA =
∑

y∈A
p(x, y) +

∑

y �∈A
p(x, y)(1 + EyτA) (3.27)

or in compact form

ExτA = PwA(x) + 1 = −LwA(x) + 1 (3.28)

Equations (3.26) is a special cases of the general Dirichlet problem

Lf(x) = g(x), x ∈ Γ\A
f(x) = 0, x ∈ A (3.29)

for some set A and some function f . We have seen in Proposition 3.1
that the homogeneous boundary value problem (i.e. if g ≡ 0) has the
unique solution f(x) ≡ 0. This implies that the problem (3.29) has a
unique solution that can (by linearity) be represented in the form

f(x) =
∑

y∈Γ\A
GΓ\A(x, y)g(y) (3.30)
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Of course, GΓ\A is simply the matrix inverse of the matrix LΓ\A whose
elements are

LΓ\A(x, y) = L(x, y), x, y ∈ Γ\A
LΓ\A(x, y) = 0, x ∈ A ∨ y ∈ A (3.31)

We will call LΓ\A the Dirichlet operator on Γ\A. Note that while L
is a positive operator, due to Proposition 3.1, LΓ\A is strictly positive
whenever A �= ∅. The inverse operator GΓ\A(x, y) is usually called the
Green’s function.

We see that we would really like to compute this Green’s function.
What we will actually show now is that the Green’s function can be
computed in terms of equilibrium potentials and equilibrium measures.
To see this, let us return to (3.8) and interpret this as an equation for
hD,A where the boundary conditions are only prescribed on A but not
on D: Note first that since hA,D(x) = 1 − hD,A(x), (3.8) can also be
written as

eA,D(x) = LhD,A(x) (3.32)

With this relation, assuming eA,D given on D, we can re-write the
determining equation for hD,A as an inhomogeneous Dirichlet problem
with boundary conditions only on A:

LhD,A(x) = 0, x ∈ Γ\(A ∪D)
LhD,A(x) = eA,D(x), x ∈ D
hD,A(x) = 0, x ∈ A (3.33)

Thus we can write

hD,A(x) =
∑

y∈D
GΓ\A(x, y)eA,D(y) (3.34)

Let us now consider the special case when D is a single point, say
D = {z}. Then (3.34) gives

hz,A(x) = GΓ\A(x, z)eA,D(z) (3.35)

which gives immediately

GΓ\A(x, z) =
hz,A(x)
eA,D(z)

. (3.36)

Now due to the symmetry of L,

GΓ\A(x, z)μ(x) = GΓ\A(z, x)μ(z) (3.37)
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This gives us

GΓ\A(z, x) =
μ(x)hz,A(x)
μ(z)eA,D(z)

. (3.38)

In conclusion, we have the following useful fact:

Proposition 3.4. The Dirichlet Green’s function for any set A ⊂ G
can be represented in terms of the equilibrium potential and capacities as

GΓ\A(x, z) =
μ(z)hx,A(z)
cap(A, z)

(3.39)

We now get immediately the desired representations for the mean
times:

ExτA =
∑

y∈Γ\A

μ(y)hx,A(y)
cap(A, x)

(3.40)

These formulas will prove to be excessively useful in the sequel.

3.4 Renewal Equations

The application of Proposition 3.4 may not appear very convincing,
as we can actually solve the Dirichlet problems directly. On the other
hand, even if we admit that the Dirichlet variational principle gives us
a good tool to compute the denominator, i.e. the capacity, we still do
not know how to compute the equilibrium potential. We will now show
that a surprisingly simple argument provides a tool that allows us to
reduce, for our purposes, the computation of the equilibrium potential
to that of capacities.

This yields the renewal bound for the equilibrium potential.

Lemma 3.5. Let A,D ⊂ Γ be disjoint, and x ∈ (A ∪D)c. Then

Px[τA < τD] = hA,D(x) ≤ cap(x,A)
cap(x,D)

(3.41)

Proof. The basis of our argument is the trivial observation that if the
process starting at a point x wants to realise the event {τA < τD}, it
may do so by going to A immediately and without returning to x again,
or it may return to x without either going to A or to D. Clearly, once
the process returns to x it is in the same position as at the starting
time, and we can use the (strong) Markov property to separate the
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probability of what happened before the first return to x to whatever
will happen later. Formally:

Px[τA < τD] = Px[τA < τD∪x] + Px[τx < τA∪D ∧ τA < τD]
= Px[τA < τD∪x] + Px[τx < τA∪D]Px[τA < τD] (3.42)

We call this a renewal equation. We can solve this equation for
Px[τA < τD]:

Px[τA < τD] =
Px[τA < τD∪x]

1− Px[τx < τA∪D]
=

Px[τA < τD∪x]
Px[τA∪D < τx]

(3.43)

By elementary monotonicity properties this representation yields the
bound

Px[τA < τD] ≤ Px[τA < τx]
Px[τD < τx]

=
cap(x,A)
cap(x,D)

(3.44)

Of course this bound is useful only if cap(x,A)
cap(x,D) < 1, but since

Px[τA < τD] = 1− Px[τD < τA], the applicability of this bound is quite
wide. It is quite astonishing how far the simple use of this renewal
bound will take us.

4 Metastability

We come now to a general definition of metastability in the context of
discrete Markov chains.

4.1 Metastable Points

Definition 4.1. Assume that Γ is a discrete set. Then a Markov pro-
cesses Xt is metastable with respect to the set of points M⊂ Γ , if

supx∈M Px[τM\x < τx]
infy �∈M Py[τM < τy]

≤ ρ� 1 (4.1)

We will see that Definition 4.1 is (at least if Γ is finite) equivalent
to an alternative definition involving averaged hitting times.

Definition 4.2. Assume that Γ is a finite discrete set. Then a Markov
processes Xt is metastable with respect to the set of points M⊂ Γ , if

infx∈M ExτM\x
supy �∈M EyτM

≥ 1/ρ� 1 (4.2)

We will show that without further assumptions on the particular
properties of the Markov chain we consider, the fact that a set of
metastable states satisfying the condition of Definition 4.1 exists im-
plies a number of structural properties of the chain.



194 A. Bovier

4.2 Ultrametricity

An important fact that allows to obtain general results under our Def-
inition of metastability is the fact that it implies approximate ultra-
metricity of capacities. This has been noted in [8].

Lemma 4.3. Assume that x, y ∈ Γ , D ⊂ Γ . Then, if for 0 < δ < 1
2 ,

cap(x,D) ≤ δcap(y, x), then

1− 2δ
1− δ ≤

cap(x,D)
cap(y,D)

≤ 1
1− δ (4.3)

Proof. The key idea of the proof is to use the probabilistic represen-
tation of capacities and renewal type arguments involving the strong
Markov property. It would be nice to have a purely analytic proof of
this lemma.

We first prove the upper bound. We write

cap(x,D) = cap(D,x) =
∑

z∈D
μ(z)ex,D(z) =

∑

z∈D
μ(z)Pz[τx < τD]

(4.4)
Now

Pz[τx < τD] = Pz[τx < τD, τy < τD] + Pz[τx < τD, τy ≥ τD]
= Pz[τx < τD, τy < τD] + Pz[τx < τD∪y]Px[τD < τy]

= Pz[τx < τD, τy < τD] + Pz[τx < τD∪y]
Px[τD < τy∪x]
Px[τD∪y < τx]

(4.5)

Here we used the Markov property at the optional time τx to split
the second probability into a product, and then the renewal equation
(3.43). Now by assumption,

Px[τD < τy∪x]
Px[τD∪y < τx]

≤ Px[τD < τx]
Px[τy < τx]

≤ δ (4.6)

Inserting (4.6) into (4.5) we arrive at

Pz[τx < τxD] ≤ Pz[τy < τD, τx < τD] + δPz[τx < τD∪y] (4.7)
≤ Pz[τy < τD] + δPz[τx < τD]

Inserting this inequality into (4.4) implies

cap(x,D) ≤
∑

z∈D
μ(z)Pz[τy < τD] + δ

∑

z∈D
μ(z)Pz[τx < τD] (4.8)

= cap(y,D) + δcap(x,D)

which implies the upper bound.
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The lower bound follows by observing that from the upper bound
we get that cap(x,D) ≤ δ

1−δ cap(x, y). Thus reversing the rôle of x and

y, the resulting upper bound for cap(y,D)
cap(x,D) is precisely the claimed lower

bound.

Lemma 4.3 has the following immediate corollary, which is the ver-
sion of the ultrametric triangle inequality we are looking for:

Corollary 4.4. Let x, y, z ∈M. Then

cap(x, y) ≥ 1
3

min (cap(x, z), cap(y, z)) (4.9)

Valleys. In the sequel it will be useful to have the notion of a “valley”
or “attractor” of a point in M. We set for x ∈M,

A(x) ≡
{
z ∈ Γ |Pz[τx = τM] = sup

y∈M
Pz[τy = τM]

}
(4.10)

Note that valleys may overlap, but from Lemma 4.3 it follows easily
that the intersection has a vanishing invariant mass. The notion of a
valley in the case of a process with invariant measure exp(−f(x)/ε)
coincides with this notion.

More precisely, the next Lemma will show that if y belongs to the
valley of m ∈ M, then either the capacity cap(y,M\m) is essentially
the same as cap(m,M\m), or the invariant mass of y is excessively
small. That is to say that within each valley there is a subset that “lies
below the barrier defined by the capacity cap(m,M\m), while the rest
has virtually no mass, i.e. the process never really gets there.

Lemma 4.5. Let m ∈M, y ∈ A(m), and D ⊂M\m. Then either

1
2
≤ cap(m,D)

cap(y,D)
≤ 3

2

or
μ(y) ≤ 3|M| μ(y)

cap(y,M)
cap(m,D)

Proof. Lemma 4.3 implies that if cap(m, y) ≥ 3cap(m,D), then (4.5)
holds. Otherwise,

μ(y)
μ(m)

≤ 3
μ(y)

cap(y,m)
cap(m,D)
μ(m)

(4.11)
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Since y ∈ A(m), we have that Py [τm ≤ τM] ≥ 1/|M|. On the other
hand, the renewal estimate yields

Py [τm ≤ τM] ≤ cap(y,m)
cap(y,M)

(4.12)

Hence
cap(y,M) ≤ |M|cap(y,m) (4.13)

which yields (4.5).

4.3 Mean Hitting Times

We will now derive a very convenient expression for the mean time
of arrival in a subset J ⊂ M of the metastable points. This will be
based on our general representation formula for mean arrival times
(3.40) together with the renewal based inequality for the equilibrium
potential and the ultrametric inequalities for the capacities that we just
derived under the hypothesis of Definition 4.1.

Let x ∈ M, x �∈ J ⊂ M. We want to compute ExτJ . Our starting
point is the following equation, that is immediate from (3.40)

ExτJ =
μ(x)

cap(x, J)

∑

y∈Jc

μ(y)
μ(x)

hx,J\x(y) (4.14)

We want to estimate the summands in the sum (4.14). We will set

a ≡ inf
y
μ(y)−1cap(y,M). (4.15)

The following lemma provides the necessary control over the equilib-
rium potentials appearing in the sum.

Lemma 4.6. Let x ∈M and J ⊂M with x �∈ J . Then:

(i) If x = m, either

hx,J(y) ≥ 1− 3
2
|M|a−1 cap(x, J)

μ(y)
(4.16)

or
μ(y) ≤ 3|M|a−1cap(m,J) (4.17)
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(ii) If m ∈ J , then

μ(y)hx,J(y) ≤
3
2
|M|a−1cap(m,x) (4.18)

(iii) If m �∈ J ∪ x, then either

hx,J(y) ≤ 3
cap(m,x)
cap(m,J)

(4.19)

and

hx,J(y) ≥ 1− 3
cap(m,J)
cap(m,x)

(4.20)

or
μ(y) ≤ 3|M|a−1 max (cap(m,J), cap(m,x)) (4.21)

We will skip the somewhat tedious proof of this lemma. With its help
one can give rather precise expressions for the mean hitting times (4.14)
that only involve capacities and the invariant measure. We will only
consider a special case of particular interest, namely when J contains all
points inM that ‘lie lower than’ x, i.e. if J = Mx ≡ {m ∈M : μ(m) ≥
δμ(x)}, for some δ � 1 to be chosen. We will call the corresponding
time τMx the metastable exit time from x. In fact, it is reasonable to
consider this the time when the process has definitely left x, since the
mean time to return to x from Mx is definitely larger than (or at most
equal in degenerate cases) ExτMx . Nicely enough, these mean times
can be computed very precisely:

Theorem 4.7. Let x ∈ M and J ⊂ M\x be such a that for all m �∈
J ∪ x either μ(m) � μ(x) or cap(m,J) � cap(m,x), then

ExτJ =
μ(A(x))
cap(x, J)

(1 +O(ρ)) (4.22)

Proof. Left to the reader.

Finally we want to compute the mean time to reach M starting
from a general point.

Lemma 4.8. Let z �∈ M. Then

EzτM ≤ a−2 (|{y : μ(y) ≥ μ(z)|}+ C) (4.23)
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Proof. Using Lemma 4.2, we get that

EzτM ≤ μ(z)
cap(z,M)

∑

y∈Mc

μ(y)
μ(z)

max
(

1,
cap(y, z)

cap(y,M)

)

=
μ(z)

cap(z,M)

∑

y∈Mc

μ(y)
μ(z)

max
(

1,
Py[τz < τy]
Py[τM < τy]

)

≤ sup
y∈Mc

(
μ(y)

cap(y,M)

)2 ∑

y∈Mc

max
(
μ(y)
μ(z)

,Pz[τy < τz]
)

≤ sup
y∈Mc

(
μ(y)

cap(y,M)

)2
⎛

⎝
∑

y:μ(y)≤μ(z)

μ(y)
μ(z)

+
∑

y:μ(y)>μ(z)

1

⎞

⎠

≤ sup
y∈Mc

(
μ(y)

cap(y,M)

)2

(C + |{y : μ(y) > μ(z)}|) (4.24)

which proves the lemma.

Remark 4.9. If Γ is finite (resp. not growing too fast with ε), the above
estimate combined with Theorem 4.7 shows that the two definitions of
metastability we have given in terms of mean times rep. capacities are
equivalent. On the other hand, in the case of infinite state space Γ , we
cannot expect the supremum over EzτM to be finite, which shows that
our second definition is less suitable than the first.

5 Upper and Lower Bounds for Capacities

In this lecture we will introduce some powerful, though simple ideas
that allow to compute upper and lower bounds for capacities that are
relevant for metastability. We will do this with a concrete model, the
Glauber dynamics for the Curie-Weiss model, at hand, but the methods
we will use are also applicable in other situations.

Let me therefore first of all recall this model and its dynamics.

5.1 The Curie-Weiss Model

The Curie-Weiss model is the simplest model for a ferromagnet. Here
the state space is the hypercube SN ≡ {−1, 1}N , and the Hamiltonian
of the Curie–Weiss model is

HN (σ) = − 1
2N

∑

1≤i,j≤N
σiσj − h

N∑

i=1

σi (5.1)
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The crucial feature of the model is that the Hamiltonian is a function
of the macroscopic variable, the magnetization as a function on the
configuration space: we will call

mN (σ) ≡ N−1
N∑

i=1

σi (5.2)

the empirical magnetization. Here we divided by N to have a specific
magnetization. A function of this type is called a macroscopic function,
because it depends on all spin variables. We can indeed write

HN (σ) = −N
2

[mN (σ)]2 − hNmN (σ) ≡ −NEh(mN (σ)) (5.3)

The computation of the partition function is then very easy: We
write

Zβ,h,N =
∑

m∈MN

eNβ(
m2

2
+mh)zm,N (5.4)

where MN is the set of possible values of the magnetization, i.e.,

MN ≡ {m ∈ R : ∃σ ∈ {−1, 1}N : mN (σ) = m} (5.5)
= {−1,−1 + 2/N, . . . , 1− 2/N, 1}

and
zm,N ≡

∑

σ∈{−1,1}N

1ImN (σ)=m (5.6)

is a ‘micro-canonical partition function’. Fortunately, the computation
of this micro-canonical partition function is easy. In fact, all possible
values of m are of the form m = 1− 2k/N , and for these

zm,N =
(

N

N(1−m)/2

)
≡ N !

[N(1−m)/2]![N(1 +m)/2]!
(5.7)

It is always useful to know the asymptotics of the logarithm of the
binomial coefficients. If we set, for m ∈MN

N−1 ln zm,N ≡ ln 2− IN (m) ≡ ln 2− I(m)− JN (m) (5.8)

where
I(m) =

1 +m
2

ln(1 +m) +
1−m

2
ln(1−m) (5.9)
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then

JN (m) =
1

2N
ln

1−m2

4
+

lnN + ln(2π)
2N

+ O
(
N−2

( 1
1−m +

1
1 +m

))
(5.10)

(5.10) is obtained using the asymptotic expansion for the logarithm
of the Gamma function. The function I(x) is called Cramèr’s entropy
function and worth memorizing. Note that by its nature it is a relative
entropy. The function JN is of lesser importance, since it is very small.

The Gibbs measure is then

μβ,N ≡
exp

(
βN

[
mN (σ)2/2 + hmN (σ)

])

Zβ,N
. (5.11)

an important role is played by the measure induced by the map mN ,

Qβ,N (m) ≡ μβ,N ◦m−1
N (m) =

exp (−βN [−Eh(m)]−NIN (m))
2NZβ,N

.

(5.12)
Note that this measure concentrates sharply, as N goes to infinity, on
the minimizers of the function Fβ,N ≡ −Eh(m) + β−1I(m).

5.2 Glauber Dynamics

Typical dynamics studied for such models are Glauber dynamics,
i.e. (random) Markov chains σ(t), defined on the configuration space
SN that are reversible with respect to the (random) Gibbs measures
μβ,N (σ) and in which the transition rates are non-zero only if the fi-
nal configuration can be obtained from the initial one by changing the
value of one spin only. A particular choice of transition rates are given
by the Metropolis algorithm:

pN (σ, σ′) ≡

⎧
⎪⎨

⎪⎩

0, if ‖σ − σ′‖ > 2,
1
N e

−β[HN (σ′)−HN (σ)]+ , if ‖σ − σ′‖ = 2,
1− 1

N

∑
τ :‖τ−σ‖=2 e

−β[HN (σ′)−HN (σ)]+ , ifσ = σ′.
(5.13)

Here [f ]+ ≡ max(f, 0).
There is a simple way of analysing this dynamics which is based

on the observation that in this particular model, if σ(t) is the Markov
process with the above transition rates, then the stochastic process
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m̃N (t) ≡ mN (σ(t)) is again a Markov process with state space MN

and invariant measure Qβ,N .
Here we do not want to follow this course, but we will use more

generally applicable bounds that will, however, reproduce the exact
results in this simple case.

As a first problem that we encounter in this way it the proper defini-
tion of metastable state. Since the invariant (Gibbs) measure is constant
on the sets of configurations with given value of mN , clearly looking for
configurations that are local minima of the energy, HN , is not a good
idea. In fact, since the induced measure Qβ,N has local maxima at the
minima of the function fβ,N , and given the symmetries of the problem,
it seems far more natural to consider as metastable sets the sets

M± ≡ {σ : mN (σ) = m∗
±}, (5.14)

where m∗
± are the largest, respectively smallest local minimizer of

fβ,N (m) = 0.
We may come back to the question whether this is a feasible defini-

tion later. For the moment, we want to see how in such a situation we
can compute the relevant capacity, cap(M+,M−).

5.3 Upper Bounds

Our task is to compute

cap(M+,M−) = inf
h∈H

1
2

∑

σ,τ∈SN

μ(σ)pN (σ, τ) [h(σ)− h(τ)]2 , (5.15)

where

H = {h : ΣN → [0, 1] : h(σ) = 0, σ ∈M+, h(σ) = 1, σ ∈M−} . (5.16)

The general strategy is to prove an upper bound by guessing some a-
priori properties of the minimizer, h, and then to find the minimizers
within this class. There are no limits to one’s imagination here, but of
course some good physical insight will be helpful. The good thing is
that, whatever we will guess here, will be put to the test later when
we will or will not be able to come up with a matching lower bound.
Quite often it is not a bad idea to try to assume that the minimizer
(i.e. the equilibrium potential) depends on σ only through some order
parameter. In our case this can only be the magnetisation, mN (σ). As
a matter of fact, due to symmetry, in our case we can know a priori
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that this will be true for a fact, but, even if it may not be true, it
may give a good bound for the capacity: it is really only necessary that
this assumption holds in those places where the sum in (5.15) gives a
serious contribution!

Let us see where this gets us:

cap(M+,M−) = inf
g∈H̃

1
2

∑

σ,τ∈SN

μ(σ)pN (σ, τ) [g(mN (σ))− g(mN (τ))]2 ,

(5.17)
where

H̃ =
{
g : [−1, 1]→ [0, 1] : g(m∗

−) = 0, g(m∗
+) = 1

}
. (5.18)

But

1
2

∑

σ,τ∈SN

μ(σ)pN (σ, τ) [g(mN (σ))− g(mN (τ))]2 (5.19)

=
1
2

∑

m,m′

[g(m)− g(m′)]2
∑

σ:mN (σ)=m,τ :mN (τ)=m′

μ(σ)pN (σ, τ)

=
1
2

∑

m,m′

Qβ,N (m)rN (m.m′)[g(m)− g(m′)]2,

where

rN (x, y) ≡ 1
Qβ,N (x)

∑

σ:mn(σ)=x

∑

τ :mN (τ)=y

μβ,N (σ)pN (σ, τ) (5.20)

In our special case of the Metropolis dynamics, pN (σ, τ) depends only
on mN (σ) and mN (τ)

rN (x, y)=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, if |x− y|>2/N,
(1− x)/2 exp(−βN |FN (x+ 2/N)−FN (x)]+, if y = x+ 2/N,
(1 + x)/2 exp(−βN |FN (x− 2/N)−FN (x)]+, if y = x− 2/N,
1− (1−x)

2 exp(−βN |FN (x+ 2/N)−FN (x)]+
− (1+x)

2 exp(−βN |FN (x− 2/N)−FN (x)]+, ifx = y.

(5.21)

The main point is that the remaining one-dimensional variational
problem involving the quadratic form (5.19) can be solved exactly. The
answer is given in the form
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inf
g∈H̃

1
2

∑

m,m′

Qβ,NrN (m.m′)[g(m)− g(m′)]2 (5.22)

=

⎡

⎣
N(m+−m−)/2−1∑

�=0

1
Qβ,N (m+2�/N)rN (m− + 2�/N,m−(2�+ 2)/N)

⎤

⎦
−1

The sum appearing in the denominator can be further analysed using
the Laplace method, but this shall be not our main concern at the
moment.

The question we want to address now is how to get a corresponding
lower bound.

5.4 Lower Bounds

The real art in analysing metastability in our approach lies in the judi-
cious derivation of lower bounds for the capacity. There are two ways
of seeing how this can be done. First, we may use the monotonicity of
the Dirichlet form in the parameters pN (σ, τ). This means that we may,
in particular, set a number of the pN (σ, τ) to zero to obtain a simpler
system for which we may be able to find the solution of our variational
problem more easily. In many cases, this strategy has provided good
results.

There is, however, a more general approach that gives us far more
flexibility. To this end, consider a countable set I, and a let G ≡
{gxy, x, y ∈ Γ}, be a collection of sub-probability measures on I, i.e.
for each (x, y), gxy(α) ≥ 0, and

∑
α∈I gxy(α) ≤ 1. Then

cap(A,D) = inf
h∈HA,D

∑

α∈I

1
2

∑

x,y

μ(y)gxy(α)p(x, y) ‖h(x)− h(y)‖2

≥
∑

α∈I
inf

h∈HA,D

1
2

∑

x,y

μ(y)gxy(α)p(x, y) ‖h(x)− h(y)‖2

≡
∑

α∈I
inf

h∈HA,D

ΦG(α)(h) ≡
∑

α∈I
capG(α)(A,D), (5.23)

where HA,D is the space of functions from Γ to [0, 1] that vanish on
D and are equal to one on A. As this it true for all G, we get the
variational principle

cap(A,D) = sup
G

∑

α∈I
.capG(a)(A,D) (5.24)
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Note that this may look trivial, as of course the supremum is realised
for the trivial case I = {1}, gxy(1) = 1, for all (x, y). The interest in the
principle arises from the fact that there may be other choices that still
realise the supremum (or at least come very close to it). If we denote
by hG(α)

A,D the minimizer of ΦG(α)(h), then G realises the supremum,
whenever

h
G(α)
A,D (x) = hA,D(x), ∀x : gxy(α) �= 0. (5.25)

Of course we do not know hA,D(x), but this observation suggest a very
good strategy to prove lower bounds, anyhow: guess a plausible test
function h for the upper bound, then try to construct G such that
the minimizers, hG(α), are computable, and are similar to h! If this
succeeds, the resulting upper and lower bounds will be at least very
close. Remarkably, this strategy actually does work in many cases.

Lower Bounds Through One-Dimensional Paths

The following approach was developed in this context with D. Ioffe [5].
It can be seen as a specialisation of a more general approach by Berman
and Konsowa [2]. We describe it first in an abstract context and then
apply it to the Curie-Weiss model. Let Γ ≡ Γ0 ∪ . . . ΓK be the vertex
set of a graph. We call a graph layered, if for any edge, e ≡ (v, u), there
exists � such that u ∈ Γ� and v ∈ Γ�−1 or v ∈ Γ�+1. Let p(u, v) be a
Markov transition matrix whose associated graph is a layered graph on
Γ , and whose unique reversible measure is given by μ. We are interested
in computing the capacity from Γ0 to ΓK , i.e.

C0,K ≡
1
2

inf
h:h(Γ0)=1,h(ΓK)=0

∑

σ,σ′∈Γ

μ(σ)p(σ, σ′) [h(σ)− h(σ′)]2 (5.26)

= inf
h:h(Γ0)=1,h(ΓK)=0

K−1∑


=0

∑

σ�∈Γ�,σ�+1∈Γ�+1

μ(σ
)p(σ
, σ
+1) [h(σ
)− h(σ
+1)]
2

Let us introduce a probability measure ν0 on Γ0. Let q be a Markov
transition matrix on Γ whose elements, q(σ.σ′), are non-zero only if,
for some �, σ ∈ Γ� and σ′ ∈ Γ�+1, and if p(σ, σ′) > 0. Define, for � ≥ 0,

ν�+1(σ�+1) =
∑

σ�∈Γ�

ν�(σ�)q(σ�, σ�+1). (5.27)

Let T denote the set of all directed paths form Γ0 to ΓK on our
graph. Note that the Markov chain with transition matrix q and initial
distribution ν0 defines a probability measure on T , which we will denote
by Q.
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We now associate for any T ∈ T and any edge, b = (σ�, σ�+e) in our
graph the weight

wT (b) ≡
{

0, if b �∈ T
Q(T )/(q(b)ν�(σ�)), if b = (σ�, σ�+1) ∈ T

(5.28)

Lemma 5.1. For all b in our graph,
∑

T

wT (b) = 1 (5.29)

Proof. Note that, if T = (σ − 1, . . . , σK), and b = (σ�, σ�+e)

Q(T )/(q(b)ν�(σ�)) = ν0(σ0)q(σ0, σ1) . . .

. . . q(σ�−1, σ�)
1
ν�
q(σ�+1, σ�+2) . . . q(σk−1, σK) (5.30)

Summing over all T containing b means to sum this expression over
σ0, σ1, . . . , σ�−1, and over σ�+1, . . . , σK . Using the definition of νk is
easy to see that this gives exactly one.

Theorem 5.2. With the definition above we have that

C0,K ≥
∑

T∈T
Q(T )

[
K−1∑

�=0

ν�(σ�)q(σ�, σ�+1)
μ(σ�)p(σ�, σ�+1)

]−1

(5.31)

Proof. In view of the preceding lemma, we have clearly that

C0,K = inf
h:h(Γ0)=1,h(ΓK)=0

K−1∑

�=0

∑

σ�∈Γ�,σ�+1∈Γ�+1

∑

T∈T
wT (σ�, σ�+1)μ(σ�)

× p(σ�, σ�+1) [h(σ�)− h(σ�+1)]
2

= inf
h:h(Γ0)=1,h(ΓK)=0

∑

T∈T
Q(T )

K−1∑

�=0

μ(σ�)p(σ�, σ�+1)
ν�(σ�)q(σ�, σ�+1)

[h(σ�)−h(σ�+1)]
2

≥
∑

T∈T
Q(T ) inf

h:h(σ0)=1,h(σK)=0

K−1∑

�=0

μ(σ�)p(σ�, σ�+1)
ν�(σ�)q(σ�, σ�+1)

[h(σ�)−h(σ�+1)]
2

(5.32)

Solving the one-dimensional variational problems in the last line gives
the well-known expression that is given in the statement of the theorem.
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Remark 5.3. The quality of the lower bound depends on to what extend
the interchange of the summation over paths and the infimum over the
functions h is introducing errors. If the minimizers are the same for all
paths, then no error what so ever is made. This will be the case if the
effective capacities

μ(σ�)p(σ�, σ�+1)
ν�(σ�)q(σ�, σ�+1)

are independent of the particular path.

Remark 5.4. Berman and Konsowa [2] prove a more general lower
bound where the space of paths contains all self-avoiding paths, with-
out the restriction of directedness we have made. In this class, they
show the supremum over all probability distributions on the space of
paths yields exactly the capacity.

Application to the Curie-Weiss Model

In the Curie-Weiss model, it is a very simple matter to achieve the
objective stated in the remark above. Clearly, we choose for the layers
the sets Γ� ≡ {σ : mN (σ) = m∗

− + 2�/N}.
Since μ(σ) depends only on mN (σ), and pN (σ, τ) depends only on

mN (σ), mN (τ), and the fact whether or not τ is reachable from σ by
a single spin flip, it is enough to choose for ν0 the uniform measure on
the set Γ0, and for q(σ�, σ�+1) = 2

N−Nm∗
−−2� . Then ν� is the uniform

measure on Γ�, and that

ν�(σ�)
μ(σ�)

=
1

μ(Γ�)
=

1
Qβ,N (m∗

− + 2�/N)
, (5.33)

and
pN (σ�, σ�+1)
q(σ�, σ�+1)

= rN (σ�, σ�+1). (5.34)

Thus, the lower bound from Theorem 5.2 reproduces the upper bound
exactly.

6 Metastability and Spectral Theory

We now turn to the characterisation of metastability through spectral
data. The connection between metastable behaviour and the existence
of small eigenvalues of the generator of the Markov process has been
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realised for a very long time. Some key references are [16, 17, 18, 23,
24, 27, 31, 33, 38, 40, 39]. Here we will explain the approach developed
in [8].

We will show that Definition 4.1 implies that the spectrum of L
decomposes into a cluster of |M| very small real eigenvalues that are
separated by a gap from the rest of the spectrum. To avoid complica-
tions we will assume that |Γ | s finite throughout this section.

6.1 Basic Notions

Let D ⊂ Γ . We say that λ ∈ C is an eigenvalue for the Dirichlet prob-
lem, resp. the Dirichlet operator LD, with boundary conditions in D if
the equation

Lf(x) = λf(x), x ∈ Γ\D
f(x) = 0, x ∈ D (6.1)

has a non-zero solution f . f ≡ fλ is then called an eigenfunction.
If D = ∅ we call the corresponding values eigenvalues of L. From the
symmetry of the operator L it follows that any eigenvalue must be real;
moreover, since L is positive, all eigenvalues are positive. If Γ is finite
and D �= ∅, the eigenvalues of the corresponding Dirichlet problem
are strictly positive, while zero is an eigenvalue of L itself with the
constant function the corresponding (right) eigenfunction.

If λ is not an eigenvalue of LD, the Dirichlet problem

(L− λ)f(x) = g(x), x ∈ Γ\D
f(x) = 0, x ∈ D (6.2)

has a unique solution and the solution can be represented in the form

f(x) =
∑

y∈Γ\D
GλΓ\D(x, y)g(y) (6.3)

where GλΓ\D(x, y) is called the Dirichlet Green’s function for L− λ.
Equally, the boundary value problem

(L− λ)f(x) = 0, x ∈ Γ\D
f(x) = φ(x), x ∈ D (6.4)

has a unique solution in this case. Of particular importance will be the
λ-equilibrium potential (of the capacitor (A,D)), hλA,D, defined as the
solution of the Dirichlet problem
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(L− λ)hλA,D(x) = 0, x ∈ (A ∪D)c

hλA,D(x) = 1, x ∈ A

hλA,D(x) = 0, x ∈ D (6.5)

We may define analogously the λ-equilibrium measure

eλD,A(x) ≡ (L− λ)hλA,D(x) (6.6)

Alternatively, eλA,D on A, is the unique measure on A, such that

hλA,D(x) =
∑

y∈A
GλDc(x, y)eλA,D(y) (6.7)

If λ �= 0, the equilibrium potential still has a probabilistic interpre-
tation in terms of the Laplace transform of the hitting time τA of the
process starting in x and killed in D. Namely, we have for general λ,
that, with u(λ) ≡ − ln(1− λ),

hλA,D(x) = Exe
u(λ)τA1IτA<τD

for x ∈ (A ∪ D)c, whenever the right-hand side exists. Note that the
left hand side is in general the meromorphic extension (in λ ∈ C) of
the probabilistically defined right-hand side.

6.2 A Priori Estimates

The first step of our analysis consists in showing that the matrix LM

that has Dirichlet conditions in all the points of M has a minimal
eigenvalue that is not smaller than O(a2).

The basis for a priori estimates of eigenvalues is the variational
representation of the principal eigenvalue:

Lemma 6.1. The principal (smallest) eigenvalue, λD, of the Dirichlet
operator LD satisfies

λD = inf
f :f(x)=0,x∈D

Φ(f)
‖f‖22,μ

(6.8)

where ‖f‖2,μ ≡
(∑

x∈Γ μ(x)f(x)
2
)1/2
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Proof. Since LD is a positive operator, there exists A such that L =
A∗A. If λ is the smallest eigenvalue of LD, then

√
λ is the smallest

eigenvalue of A and vice versa. But

λ =
(

inf
f :f(x)=0,x∈D

‖Af‖2,μ
‖f‖2,μ

)2

= inf
f :f(x)=0,x∈D

‖Af‖22,μ
‖f‖22,μ

= inf
f :f(x)=0,x∈D

Φ(f)
‖f‖22,μ

(6.9)

The following is a simple application due to Donsker and Varadhan
[15].

Lemma 6.2. Let λD denote the infimum of the spectrum of LD. Then

λD ≥
1

supz∈Γ\D EzτD
(6.10)

Proof. Consider any function φ : Γ → R satisfying φ(x) = 0 for x ∈ Δ.
We will use the elementary fact that for all x, y ∈ Γ and C > 0

φ(y)φ(x) ≤ 1
2
(φ(x)2C + φ(y)2/C) (6.11)

with C ≡ ψ(y)/ψ(x), for some positive function ψ to get a lower bound
on Φ(φ):

Φ(φ) =
1
2

∑

x,y

μ(x)p(x, y) (φ(x)− φ(y))2

= ‖φ‖22,μ −
∑

x,y �∈D
μ(x)p(x, y)φ(x)φ(y)

≥ ‖φ‖22,μ −
∑

x,y

μ(x)p(x, y)
1
2
(
φ(x)2ψ(y)/ψ(x) + φ(y)2ψ(x)/ψ(y)

)

= ‖φ‖22,μ −
∑

x�∈D
μ(x)φ(x)2

∑
y p(x, y)ψ(y)
ψ(x)

(6.12)

Now choose ψ(x) = wD(x) (defined in (3.24)). By (3.25), this yields

Φ(φ) ≥ ‖φ‖22,μ − ‖φ‖22,μ +
∑

x�∈D
μ(x)φ(x)2

1
wD(x)

=
∑

x�∈D
μ(x)φ(x)2

1
wD(x)

≥ ‖φ‖22,μ sup
x∈Dc

1
wD(x)

=‖φ‖22,μ
1

supx∈Dc ExτD

(6.13)
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Since this holds for all φ that vanish on D,

λD = inf
φ:φ(x)=0,x∈D

Φ(φ)
‖φ‖22,μ

≥ 1
supx∈Dc ExτD

(6.14)

as claimed. ere a is defined in (4.15).

If we combine this result with the estimate from Lemma 4.8, we
obtain the following proposition.

Proposition 6.3. Let λ0 denote the principal eigenvalue of the oper-
ator LM. Then there exists a constant C > 0, independent of ε, such
that for all ε small enough,

λ0 ≥ Ca2, (6.15)

where a is defined in (4.15).

Remark 6.4. Proposition 6.3 links the fast time scale to the smallest
eigenvalue of the Dirichlet operator, as should be expected. Note that
the relation is not very precise. We will soon derive a much more pre-
cise relation between times and eigenvalues for the cluster of small
eigenvalues.

6.3 Characterization of Small Eigenvalues

We will now obtain a representation formula for all eigenvalues that
are smaller than λ0. It is clear that there will be precisely |M| such
eigenvalues. This representation was exploited in [8], but already in
1973 Wentzell [40, 39] put forward very similar ideas (in the case of
general Markov processes). As will become clear, this is extremely sim-
ple in the context of discrete processes (see [10] for the more difficult
continuous case).

The basic idea is to use the fact that the solution of the Dirichlet
problem

(L− λ)f(x) = 0, x �∈ M
f(x) = φx, x ∈M, (6.16)

which exists uniquely if λ < λ0, already solves the eigenvalue equation
Lφ(x) = λφ(x) everywhere, except possibly on M. It is natural to try
to choose the boundary conditions φx, x ∈ M carefully in such a way
that (L−λ)f(x) = 0 holds also for all x ∈M. Note that there are |M|
free parameters (φx, x ∈M) for just as many equations. Moreover, by
linearity,
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f(y) =
∑

x∈M
φxh

λ
x,M\x(y). (6.17)

Thus the system of equations to be solved can be written as

0 =
∑

x∈M
φxLh

λ
x,M\x(m) ≡

∑

x∈M
φxe

λ
x,M\x(m), ∀m ∈M, (6.18)

Thus, if these equations have a non-zero solution φxx ∈ M, then λ is
an eigenvalue. On the other hand, if λ is an eigenvalue smaller than λ0

with eigenfunction φλ, then we may take φx ≡ φλ(x) in (6.16). Then,
obviously, f(y) = φλ(y) solves (6.16) uniquely, and it must be true that
(6.18) has a non-zero solution.

Let us denote by EM(λ) the |M| × |M|- matrix with elements

(EM(λ))xy ≡ eλz,M\z(x). (6.19)

Since the condition for (6.16) to have a non-zero solution is precisely
the vanishing of the determinant of EλM, we can now conclude that:

Lemma 6.5. A number λ < λ0 is an eigenvalue of L if and only if

det EM(λ) = 0 (6.20)

In the following we need a useful expression for the matrix elements
of EM(λ). Since we anticipate that λ will be small, we set

hλx(y) ≡ hx(y) + ψλx(y), (6.21)

where hx(y) ≡ hx,M\x(y) and consequently ψλx(y) solves the inhomo-
geneous Dirichlet problem

(L− λ)ψλx(y) = λhx(y), y ∈ Γ\M
ψλx(y) = 0, y ∈M (6.22)

A reorganisation of terms allows to express the matrix EM(λ) in the
following form:

Lemma 6.6.

(EM(λ))xz = μ(x)−1
(
Φ(hz, hx)− λ((hz, hx)μ + (hx, ψλz )μ

)
(6.23)
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Proof. Note that

(L− λ)hλz (x) = (L− λ)hz(x) + (L− λ)ψλz (x)
= Lhz(x)− λhz(x) + (L− λ)ψλz (x) (6.24)

Now,

Lhz(x) =
μ(x)
μ(x)

hx(x)Lhz(x) (6.25)

The function μ−1(y′)hx(y′)Lhz(y′) vanishes for all y′ �= x. Thus, by
adding a huge zero,

Lhz(x) = μ(x)−1
∑

y′∈Γ
μ(y′)hx(y′)Lhz(y′)

= μ(x)−1 1
2

∑

y,y′∈Γ
μ(y′)p(y′, y))[hz(y′)− hz(y)][hx(y′)− hx(y)] (6.26)

there the second inequality is obtained just as in the derivation of the
representation of the capacity through the Dirichlet form. Similarly,

(L− λ)ψλz (x) =

μ(x)−1
∑

y′∈Γ
μ(y′)

(
hx(y′)(L− λ)ψλz (y′)− λ1Iy′ �=xhx(y′)hz(y′)

)
(6.27)

Since ψλz (y) = 0 whenever y ∈ M, and Lhx(y) vanishes whenever
y �∈ M, using the symmetry of L, we get that the right-hand side of
(6.27) is equal to

−λμ(x)−1
∑

y′∈Γ

(
μ(y′)hx(y′)(ψλz (y

′) + 1Iy′ �=xhx(y′)hz(y′)
)

(6.28)

Adding the left-over term −λhz(x) = −λhx(x)hz(x) from (6.24) to
(6.27), we arrive at (6.23).

Expanding in λ

Anticipating that we are interested in small λ, we want to control the λ-
dependent terms ψλ in the formula for the matrix EM(Λ). From (6.22)
we can conclude immediately that ψλx is small compared to hx in the
L2(Γ, μ) sense when λ is small, since

ψλx = λ(LM − λ)−1hx. (6.29)
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Using that for symmetric operators, ‖(L − a)−1‖ ≤ 1
dist( spec(L),a) , we

see that
‖ψλx‖2,μ ≤

λ

λ0 − λ‖hx‖2,μ. (6.30)

We are now in a position to relate the small eigenvalues of L to the
eigenvalues of the classical capacity matrix. Let us denote by ‖ · |2 ≡
‖ · ‖2,μ.

Theorem 6.7. If λ < λ0 is an eigenvalue of L, then there exists an
eigenvalue μ of the |M| × |M|-matrix K whose matrix elements are
given by

Kzx =
1
2

∑
y �=y′ μ(y

′)p(y′, y)[hz(y′)− hz(y)][hx(y′)− hx(y)]
‖hz‖2‖hx‖2

≡ Φ(hz, hx)
‖hz‖2‖hx)‖2

(6.31)

such that λ = μ (1 +O(ρ)), where ρ = λ/λ0.

We will skip the proof of this theorem since it is not really needed.
In fact we will prove the following theorem.

Theorem 6.8. Assume that there exists x ∈ M such that, for some
δ � 1

δ2
cap(x,M\x)
‖hx‖22

≥ max
z∈M\x

cap(z,M\z)
‖hz‖22

. (6.32)

Then the largest eigenvalue of L below λ0 is given by

λx =
cap(x,M\x)
‖hx‖22

(1 +O(δ2 + ρ2)). (6.33)

Moreover, the eigenvector, φ, corresponding to the largest eigenvalues
normalized s.t. φx = 1 satisfies φz ≤ C(δ + ρ), for z �= x.

Proof. Let x be the point inM specified in the hypothesis. Denote by λ̄1

the Dirichlet eigenvalue with respect the set M\x. It is not very hard
to verify that λ̄1 ∼ cap(x,M\x)

‖hx‖22
. Moreover, one can easily verify that

there will be exactly |M| − 1 eigenvalues below λ̄1. Thus, there must
be one eigenvalue, λx, between λ̄1 and λ0. We are trying to compute
the precise value of this one, i.e. we look for a root of the determinant
of EM (λ) that is of order at least cap(x,M\x)

‖hx‖22
.

The determinant of EM(λ) vanishes together with that of the matrix
K̂ whose elements are
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K̂xz=
μ(x)

‖hx‖2‖hz‖2
(EM(λ))xz=

Φ(hx, hz)
‖hx‖2‖hz‖2

−λ
(

(hx, hz)μ + (ψλx , hz)μ
‖hx‖2‖hz‖2

)
.

(6.34)

We will now control al the elements of this matrix. We first deal
with the off-diagonal elements of this matrix.

Lemma 6.9. There is a constant C <∞ such that

max
x�=z∈M

(hx, hz)μ
‖hx‖2‖hz‖2

≤ Ca−1 max
m∈M

μ(m)−1cap(m,M\m) ≤ Cρ. (6.35)

Proof. Note first by the estimate (3.44) the equilibrium potentials hx(y)
are essentially equal to one on A(x). Namely,

1 ≥ hx(y) ≥ 1− cap(y,M\x)
cap(y, x)

(6.36)

By Corollary 4.4, cap(y,M\x) ≤ 2cap(x,Mx), or μ(y) ≤ 3|M|
a

cap(x,Mx).
Thus

∑

y∈A(x)

μ(y)hx(y)2 ≥
∑

y∈A(x)

μ(y)≥ 3|M|
a cap(x,Mx)

μ(y)
(

1− cap(x,M\x)
cap(y, x)

)2

≥
∑

y∈A(x)

μ(y)≥ 3|M|
a cap(x,Mx)

μ(y)−
∑

y∈A(x)

2
μ(y)

cap(y, x)
cap(x,M\x)

= μ(A(m))
(

1− 3|A(m)||M|a−1 cap(x,M\x)
μ(A(m))

)

≥ μ(A(m)) (1−O(ρ)) . (6.37)

Thus the denominator in (6.35) is bounded from below by
√ ∑

y∈A(x)

μ(y)h2
x(y)

∑

y∈A(y)

μ(y)h2
z(y) ≥

√
μ(A(x))μ(A(z))(1−O(ρ)).

(6.38)
To bound the numerator, we use that, for any x �= z ∈M,

∑

y∈Γ
μ(y)hx(y)hz(y) ≤ Cρ

√
μ(x)μ(z). (6.39)

Using this bound we arrive at the assertion of the lemma.

Next we bound the terms involving ψλ.
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Lemma 6.10. If λ0 denotes the principal eigenvalue of the operator L
with Dirichlet boundary conditions in M, then

∣∣∣∣∣∣

∑

y∈Γ
μ(y)

(
hz(y)ψλx(y)

)
∣∣∣∣∣∣

≤ λ

(λ0 − λ)‖hz‖2‖hx‖2. (6.40)

Proof. Recall that ψλx solves the Dirichlet problem (6.22). But the
Dirichlet operator LM − λ is invertible for λ < λ0 and is bounded
as an operator on �2(Γ, μ) by 1/(λ0 − λ). Thus

‖ψλx |22 ≤
(

λ

λ0 − λ

)2

‖hx‖22 (6.41)

The assertion of the lemma now follows from the Cauchy-Schwartz
inequality.

Finally we come to the control of the terms involving Φ(hx, hz). By
the Cauchy-Schwartz inequality,

Φ(hz, hx) =

∣∣∣∣∣∣
1
2

∑

y,y′

μ(y′)p(y′, y)[hx(y′)− hx(y)][hz(y′)− hz(y)]

∣∣∣∣∣∣

≤
√
Φ(hx)Φ(hz). (6.42)

Thus ∣∣∣∣
Φ(hx, hz)
‖hx‖2‖hz‖2

∣∣∣∣ ≤
√
Φ(hx)
‖hx‖22

√
Φ(hz)
‖hz‖22

. (6.43)

Therefore, by assumption, there exists one x ∈ M such that for any
(z, y) �= (x, x), ∣∣∣∣

Φ(hx, hz)
‖hx‖2‖hz‖2

∣∣∣∣ ≤ δ
Φ(hx)
‖hx‖22

. (6.44)

If we collect all our results:

(i) The matrix K̃ has one diagonal element

K̃xx =
Φ(hx)
‖hx‖22

− λ(1 +O(λ)) ≡ A− λ(1 +O(λ)), (6.45)

(ii) all other diagonal elements, Kyy, satisfy

K̃yy = O(δ2)A− λ(1 +O(λ)) ≈ −λ. (6.46)
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(iii) All off-diagonal elements satisfy

|K̃yz| ≤ Cδ2
Φ(hx)
‖hx‖22

+ Cλρ ≡ C(δA+ λρ). (6.47)

One can now look for non-zero solutions of the equations
∑

y

K̃zycy = 0, z ∈M. (6.48)

In the sequel C denotes a numerical constant whose value changes
from line to line. We may choose the vector c in such a way that
maxy∈M |cy| = 1, and this component realising the maximum to be
equal to +1. We will first show that cx = 1. To do so, assume that
cz = 1 for z �= x. Then the equation (6.48) can be written

−K̃zz =
∑

y �=z
cyK̃zy (6.49)

Using our bounds, this implies

λ ≤ C(δA+ ρλ)⇒ λ ≤ CδA

1− Cρ, (6.50)

in contradiction with the fact that λ ≥ A. Thus cx = 1 ≥ |cz|, for all
z �= x. Let us return to equation (6.48) for z �= x. It now reads

−K̃zzcz =
∑

y �=z
cyK̃zy, (6.51)

and hence
|cz| ≤ C

δA+ ρλ
λ

(6.52)

Finally, we consider equation (6.48) with z = x,

K̃xx =
∑

y �=x
cyK̃xy. (6.53)

In view of our bounds on K̃xy and on cy, this yields

|K̃xx| ≤ C
(δA+ ρλ)2

λ
≤ Cδ2A+ Cρ2λ, (6.54)

that is, we obtain that

|A− λ| ≤ Cδ2A+ ρ2λ (6.55)
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which implies
λ = A

(
1 +O(δ2 + ρ2)

)
, (6.56)

which is the first claim of the proposition. The assertion on the eigen-
vector follows from our estimates on the vector c.

Theorem 6.8 has the following simple corollary, that allows in many
situations a complete characterization of the small eigenvalues of L.

Theorem 6.11. Assume that we can construct a sequence of metastable
sets Mk ⊃ Mk−1 ⊃ · · · ⊃ M2 ⊃ M1 = x0, such that for any
i, Mi\Mi−1 = xi is a single point, and that each Mi satisfies the
assumptions of Theorem 6.8. Then L has k eigenvalues

λi =
cap(xi,Mi−1)
μ(A(xi))

(1 +O(δ)) (6.57)

As a consequence,

λi =
1

ExiτMxi

(1 +O(δ)) (6.58)

The corresponding normalized eigenfunction is given by

ψi(y) =
hxi,Mi−1(y)
‖hxi,Mi−1‖2

+
i−1∑

j=1

O(δ)
hxi,Mj−1(y)
‖hxi,Mj−1‖2

(6.59)

Proof. The idea behind this theorem is simple. Let the sets Mi of the
corollary be given by Mi = {x1, . . . , xi}. Having computed the largest
eigenvalue, λk, of L, we only have to search for eigenvalues smaller than
λk. If we could be sure that the principal Dirichlet eigenvalue ΛMk−1

is
(much) larger than k−1st eigenvalue of L, then we could do so as before
but replacing the set M≡Mk by Mk−1 everywhere. λk−1 would then
again be the largest eigenvalue of a capacity matrix involving only the
points in Mk−1. Iterating this procedure we arrive at the conclusion of
the theorem.

The theorem is now immediate except for the statement (6.58). To
conclude, we need to show that cap(x�+1,M�) = cap(x�,Mx�

). To
see this, note first that M� ⊃ Mx�

. For if there was x ∈ Mx�
that

is not contained in M�, then cap(x,M�\x) ∼ cap(x�+1,M�), while
‖hx�+1,M�

‖2 ≤ ‖hx,M�+1\x‖2, contradicting the assumption in the con-
struction of the set M�. Thus cap(x�+1,M�) ≥ cap(x�,Mx�

).
Similarly, if there was any point x ∈M� for which cap(x�+1,M�) <

cap(x�,Mx�
), then this point would have been associated to a larger

eigenvalue in an earlier stage of the construction and thus would have
already been removed from M�+1 before x�+1 is being removed.
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This observation allows us to finally realize that the k smallest eigen-
values of L are precisely the inverses of the mean (metastable) exit times
from the metastable points M.

6.4 Exponential Law of the Exit Time

The spectral estimates can be used to show that the law of the
metastable exit times are close to exponential, provided the non-
degeneracy hypothesis of Theorem 6.8 hold. Note that

Px[τMx > t] =
∑

x1,...,xt �∈Mx

p(x, x1)
t−1∏

i=1

p(xi, xi+1) =
∑

y �∈Mx

(
PMx

)t
xy
.

(6.60)

To avoid complications, let us assume that the P is positive (in partic-
ular that P has no eigenvalues close to −1. This can be avoided e.g. by
imposing that p(x, x) > 0). We now introduce the projection operators
Π on the eigenspace of the principal eigenvalue of PM� . Then

(
PMx

)t
xy

=
∑

y �∈Mx

((
PMx

)t
Π

)

xy
+

∑

y �∈Mx

((
PMx

)t
Πc

)

xy
. (6.61)

Using our estimate for the principal eigenfunction of LMx the first term
in (6.61) equals

(
1− λMx

)t ∑

y �∈Mx

hx,Mx(y)
‖hx,Mx(y)‖2

(1 +O(λMx)) ∼ e−λMx t. (6.62)

The remaining term is bounded in turn by

e−λ
Mx
2 t, (6.63)

which under our assumptions decays much faster to zero than the first
term.
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1 Introduction

Metastability is a phenomenon where a physical, chemical or biolog-
ical system, under the influence of a noisy dynamics, moves between
different regions of its state space on different time scales. On short
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Fig. 1. The paradigm picture of metastability.

time scales the system is in a quasi-equilibrium within a single region,
while on long time scales it undergoes rapid transitions between quasi-
equilibria in different regions (see Fig. 1).

Examples of metastability can be found in:

• biology : folding of proteins;
• climatology : effects of global warming;
• economics: crashes of financial markets;
• materials science: anomalous relaxation in disordered media;
• physics: freezing of supercooled liquids.

The task of mathematics is to formulate microscopic models of the rel-
evant underlying dynamics, to prove the occurrence of metastable be-
havior in these models on macroscopic space-time scales, and to identify
the key mechanisms behind the experimentally observed universality in
the metastable behavior of whole classes of systems. This is a challeng-
ing program!

The mathematics of metastability started around 1935, with the
work of Eyring, Kramers and Wigner on diffusions in potential wells.
It further developed in the 1970’s, through the work of Lebowitz and
Penrose on metastable states in van der Waals theory [25] and Freidlin
and Wentzell on randomly perturbed dynamical systems [15]. It accel-
erated in the 1980’s with the implementation of Freidlin-Wentzell the-
ory in statistical physics by Capocaccia, Cassandro, Galves, Kotecký,
Martinelli, Neves, Olivieri, Schonmann, Scoppola and Vares. Presently,
metastability is a highly active subfield of probability theory and sta-
tistical physics.

Two approaches to metastability are central within mathematics:

• Pathwise approach: This was initiated in 1984 by Cassandro, Galves,
Olivieri and Vares [11], and is based on monitoring the full trajectory
of the dynamics, in the spirit of Freidlin-Wentzell theory.



Three Lectures on Metastability under Stochastic Dynamics 225

• Potential-theoretic approach: This was initiated in 2001 by Bovier,
Eckhoff, Gayrard and Klein [5], [6], and is based on an electric net-
work perspective of the dynamics, focussing on crossing times via
estimates on capacities.

The latter approach is highlighted in the paper by Bovier in the present
volume [4]. For recent overviews of metastability, see the monograph
by Olivieri and Vares [24] and the review papers by den Hollander [17]
and Bovier [3]. Earlier review papers include Penrose and Lebowitz
[25], Schonmann [28], [29], Scoppola [31], Vares [32], Olivieri and
Scoppola [23].

In Lectures 1–3 below we describe the metastable behavior of Ising
spins subject to Glauber dynamics and of lattice gas particles subject to
Kawasaki dynamics, both in two dimensions. Attention focusses on the
identification of the geometry of the critical droplet for the crossover
from the metastable state to the stable state, and on the estimation of
the crossover time. We consider three cases:

(1) finite systems at low temperature;
(2) large systems at low temperature;
(3) moderate systems at positive temperature.

These cases are progressively more challenging, and for the latter two
work is still in progress.

Acknowledgment. The results described in these lectures are taken
from joint work with Anton Bovier, Alex Gaudillière, Dima Ioffe,
Francesca Nardi, Enzo Olivieri, Elisabetta Scoppola and Cristian
Spitoni. Part of this work was supported by the Dutch-German
Bilateral Research Group “Random Spatial Models from Physics and
Biology”, which is jointly funded by DFG and NWO. These lectures
were also presented at the “School on Information and Randomness”,
Center for Mathematical Modeling, University of Chile at Santiago,
11–15 December 2006.

2 Lecture 1: Finite Systems at Low Temperature,
Definitions

In Lecture 1, we define two models: (I) Ising spins subject to Glauber
dynamics; (II) lattice gas particles subject to Kawasaki dynamics. We
fix the metastable regimes of interest and introduce the notions of com-
munication height and communication level set between metastable
states. In Lecture 2, we formulate two theorems for these two models
that quantify their metastable behavior.
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2.1 Glauber Dynamics and Kawasaki Dynamics

Let Λ ⊂ Z
2 be a large finite box. We consider two types of configura-

tions:

(I) Ising spins: η = {η(x) : x ∈ Λ} ∈ X = {−1,+1}Λ;
−1 = down-spin, +1 = up-spin (see Fig. 2).

(II) Lattice gas: η = {η(x) : x ∈ Λ} ∈ X = {0, 1}Λ;
0 = vacant, 1 = occupied (see Fig. 2).

+ − − + −
− + + + −
+ − − + −
+ − − − +

− − + − −
Ising spins
periodic boundary

0 0 0 0 0

0 1 1 0 0

0 1 1 0 0

0 0 0 1 0

0 0 1 0 0
Lattice gas
open boundary

Fig. 2. Configurations of Ising spins and lattice gas.

On the configuration space X , we consider the following Hamiltonians
assigning an energy to each configuration:

(I) : H(η) = −J2
∑
x,y∈Λ
x∼y

η(x)η(y)− h
2

∑
x∈Λ

η(x),

(II) : H(η) = −U
∑

x,y∈int(Λ)
x∼y

η(x)η(y) +Δ
∑
x∈Λ

η(x),
(2.1)

where int(Λ) = Λ\∂Λ and x ∼ y means that x and y are neighboring
sites. In (I) we pick periodic boundary conditions, in (II) we pick open
boundary conditions (see (2.5)–(2.6) below). The parameters are:

(I) J > 0 the ferromagnetic pair potential and h > 0 the magnetic field ;
(II)U > 0 the binding energy and Δ > 0 the activation energy.
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Definition 2.1. The Metropolis dynamics at inverse temperature β ∈
(0,∞) is the continuous-time Markov process X = (X(t))t≥0 on X with
transition rates

c(η, η′) = exp
{
−β[H(η′)−H(η)]+

}
, η, η′ ∈ X , (2.2)

(where [·]+ denotes the positive part) and allowed transitions

(I) : η′ = ηx, x ∈ Λ,
(II) : η′ = ηx,y, x, y ∈ Λ, x ∼ y,

(2.3)

where

ηx(y) =
{
η(y), y �= x,
−η(x), y = x, ηx,y(z) =

⎧
⎨

⎩

η(z), z �= x, y,
η(x), z = y,
η(y), z = x.

(2.4)

In words, for Ising spins the dynamics consists of spin-flips at single
sites, called Glauber dynamics, while for the lattice gas it consists
of exchange of occupation numbers between neighboring sites, called
Kawasaki dynamics.

In the second dynamics, we also allow particles to enter and exit at
∂Λ. To that end, we also allow transitions

(II) : η′ = η∗,x, x ∈ ∂Λ, (2.5)

where

η∗,x(y) =
{
η(y), y �= x,
1− η(x), y = x. (2.6)

View this as mimicking the presence of an infinite gas reservoir in
Z

2\Λ with density e−βΔ, which inserts particles at the sites of ∂Λ at
rate e−βΔ and removes particles from the sites of ∂Λ at rate 1.

A key observation is the following. The Metropolis dynamics has
the Gibbs measure

μ(η) =
1
Z
e−βH(η), η ∈ X , (2.7)

with Z the normalizing partition sum, as its reversible equilibrium, i.e.,

μ(η)c(η, η′) = μ(η′)c(η′, η), ∀ η, η′ ∈ X . (2.8)
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Note that the two Hamiltonians in (2.1) can be transformed into
each other via the transformation

η(x)↔ 1
2
[1 + η(x)], h↔ 2U −Δ, J ↔ 1

2
U (2.9)

(modulo constant terms and boundary terms). However, the allowed
transitions for the two dynamics cannot be transformed into each other.
Indeed, the first dynamics is non-conservative, the second dynamics is
conservative (except at the boundary ∂Λ).

In what follows, we write Pη to denote the law of X given X(0) = η.
For A ⊂ X , we write

τA = inf{t ≥ 0: X(t) ∈ A, X(t−) /∈ A} (2.10)

to denote the first entrance time of A by X.

2.2 Metastable Regimes

We will study the two dynamics in the low temperature limit β → ∞,
in their so-called metastable regimes:

(I) : 0 < h < 2J, (II) : U < Δ < 2U. (2.11)

The dynamics will start in the configurations

(I) : � = all spins down, (II) : � = all sites vacant, (2.12)

and we will be interested in how the dynamics tunnels to the configu-
rations

(I) : � = all spins up, (II) : � = all sites occupied. (2.13)

To understand the restrictions in (2.11), let us consider the energy
of an �× � droplet inside Λ, i.e.,

(I) : E(�) = H(η�×�)−H(�), (II) : E(�) = H(η�×�)−H(�).
(2.14)

(Note that H(�) = 0, while H(�) < 0 when Λ is large enough depend-
ing on J and h.) An easy computation gives

(I) : E(�) = J [4�]−h�2, (II) : E(�) = −U [2�(�− 1)] +Δ�2. (2.15)

In both cases, � �→ E(�) is a downward parabola that goes through
a maximum at � = 2J

h , respectively, � = U
2U−Δ . Hence, if both these

ratios are non-integer, then the critical droplets (i.e., the droplets with
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maximal energy on the parabola) are somewhere between a square of
size �c − 1 and a square of size �c, where

(I) : �c =
⌈

2J
h

⌉
, (II) : �c =

⌈
U

2U −Δ

⌉
, (2.16)

are the critical droplet sizes. The regimes in (2.11) correspond to
�c ∈ (1,∞).

In configuration space, we have the following qualitative picture:

metastable
state

critical
droplet

stable
state

state (X )

energy (H)

Fig. 3. Qualitative energy landscape.

The metastable regimes in (2.11) correspond to the situation where
� and � are local minima of the energy (lying at the bottom of a
larger valley), � and � are global minima, and for the dynamics to
move from one to the other it has to “go over an energetic hill”. In
physics language, we say that � and � are metastable states, � and
� are stable states, and the top of the hill separating them are critical
droplets. We will address the following two questions (see Fig. 3):

(A) What are the critical droplets for the transitions � → � and
�→ �?

(B) How large are the crossover times τ� and τ� starting from � and
�, respectively?

2.3 Communication Height and Level Set

Write ω : η → η′ to denote a path of allowed transitions from η to η′.
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Definition 2.2. The communication height between � and � is
defined as

(I) : Γ = Γ (�,�) = min
ω : �→�

max
ξ∈ω

[H(ξ)−H(�)]. (2.17)

The corresponding communication level set is

(I) : S = S(�,�) =
{
ζ ∈ X : ∃ω : � → � with ω ) ζ such that

max
ξ∈ω

[H(ξ)−H(�)] = H(ζ)−H(�) = Γ
}
.

(2.18)

Similar definitions apply for �,� (with H(�) = 0).
In words, Γ is the minimal amount the energy has to increase in a path
that achieves the crossover, called the activation energy, while S is the
set of all saddle point configurations in the path (recall Fig. 3).

Our intuitive guess for the answer to question (A) is that the critical
droplets are the configurations in S, and for the answer to question (B)
that

τ�, τ� ≈ eβΓ as β →∞. (2.19)
We will show in Lecture 2 that (2.19) is correct, obtaining in fact sharp
estimates on E�(τ�) and E�(τ�), but that the critical droplets actually
form a smaller set of configurations than S, with an interesting geom-
etry. We will see that models (I) and (II) show interesting similarities
and differences.

3 Lecture 2: Finite Systems at Low Temperature,
Theorems

In this lecture, we formulate two theorems that quantify the metastable
behavior of models (I) and (II) in the regimes (2.11) by providing
detailed answers to questions (A) and (B).

3.1 Glauber Dynamics

Theorem 3.1. (Neves and Schonmann [22], Bovier and Manzo [10])

(a) There exists a set of configurations C∗ � S such that

lim
β→∞

P�(τC∗ < τ� | τ� < τ�) = 1, (3.1)

while this fails for any smaller set.
(b) The configurations in C∗ are those where the up-spins form an
�c × (�c − 1) quasi-square, with a single protuberance on one of the sides
of length �c.
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(c) The entrance distribution on C∗ is asymptotically uniform:

lim
β→∞

P� (X(τC∗) = η | τC∗ < τ�) = |C∗|−1 ∀ η ∈ C∗. (3.2)

(d) There exists a constant 0 < K = K(Λ, �c) <∞ such that

lim
β→∞

e−βΓE�(τ�) = K (3.3)

with
Γ = H(C∗) = J [4�c]− h[�c(�c − 1) + 1], (3.4)

and
lim
β→∞

P�(τ� > tE�(τ�)) = e−t ∀ t ≥ 0. (3.5)

(e) For all Λ,

K(Λ, �c) =
3

4(2�c − 1)
1
|Λ| . (3.6)

Parts (a)–(b), together with the crude estimate limβ→∞
1
β log E�(τ�) =

Γ , were proved in [22]. Parts (c)–(e) were proved in [10].
Theorem 3.1(a) says that the configurations in C∗ are the criti-

cal droplets that represent the gate for the crossover. According to
Theorem 3.1(c), the entrance distribution of this gate is uniform.

Theorem 3.1(b) is explained as follows (see Fig. 5). Since the dynam-
ics flips one spin at a time, on its way from � to � it must pass through
a configuration that has �c(�c − 1) up-spins. Among the configurations
with precisely this number of up-spins, those where the up-spins form
an �c × (�c − 1) quasi-square (of any location and orientation) have
the smallest energy (due to a discrete isoperimetric inequality; see e.g.
Alonso and Cerf [1]). Continuing on its way from � to �, the dynam-
ics must flip one more spin upwards. The configurations with smallest
energy are those where this spin is attached to one of the sides of the
quasi-square, forming a protuberance (see Fig. 4). Next, if this protu-
berance sits on one of the sides of length �c, then the dynamics can
proceed downwards in energy by successively flipping up the spins next
to the protuberance, to end up in an �c×�c square. This square is “over
the hill” (see Fig. 3), because both its side lengths are supercritical (re-
call (2.16)). On the other hand, if the protuberance sits on one of the
sides of length �c − 1, then the dynamics can proceed downwards in
energy to form an (�c−1)×(�c+1) rectangle, but this rectangle is “not
over the hill”, because one of its side lengths is subcritical.
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c

c − 1

Fig. 4. A critical droplet for model (I): The up-spins lie inside the shaded
area, the down-spins outside.

−1

+1

Γ

Fig. 5. A nucleation path.

Here is an explanation of Theorem 3.1(d–e). The exponential law
comes from the fact that the crossover only occurs after many unsuc-
cessful attempts to create a critical droplet and “go over the hill”. The
average time needed to enter C∗ is

1
|C∗| e

βΓ [1 + o(1)] as β →∞. (3.7)

Let π(�c) denote the average probability with respect to the uniform
entrance distribution that the critical droplet is exited in the direction
of � rather than �. Then the average number of attempts to go over
the hill after reaching the top is

1
π(�c)

[1 + o(1)] as β →∞. (3.8)

The product of (3.7) and (3.8) is the average crossover time, and so

K =
1

|C∗|π(�c)
. (3.9)
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Now,
|C∗| = |Λ| 4�c, (3.10)

because the droplet can be centered anywhere in Λ, has 2 possible
orientations, and the protuberance can sit in 2�c places. Moreover,

π(�c) =
1
�c

(
2

1
2

+ (�c − 2)
2
3

)
. (3.11)

Indeed, if the protuberance sits at one of the two extreme ends of a side
of length �c, then the probability is 1

2 that its one neighboring spin on
the same side flips upwards before the protuberance flips downwards.
On the other hand, when the protuberance sits at one of the �c−2 other
locations on this side, then it has two neighboring spins on the same
side and so the probability for one of them to flip upwards before the
protuberance flips downwards is 2

3 . Combining (3.9–3.11), we get (3.6).
In Theorem 3.1(a), an example of a configuration in S\C∗ is ob-

tained by picking any configuration in C∗, flipping up any spin next to
the protuberance (at gain h) and afterwards flipping down any spin at
a corner of the quasi-square (at cost h). For the dynamics, this config-
uration is a dead-end. Indeed, the last flip must be reversed before the
dynamics can initiate the motion downhill to the �c × �c square.

3.2 Kawasaki Dynamics

Theorem 3.2. (den Hollander, Olivieri and Scoppola [19], Bovier, den Hollander

and Nardi [8])

(a) There exists a set of configurations C∗ � S such that

lim
β→∞

P�(τC∗ < τ� | τ� < τ�) = 1, (3.12)

while this fails for any smaller set.
(b) The configurations in C∗ are those where the particles either form
an (�c − 2)× (�c − 2) square, with four bars attached to the four sides
of total length 3�c− 3 and 1 free particle, or form an (�c− 1)× (�c− 3)
rectangle, with four bars attached to the four sides of total length 3�c−2
and 1 free particle.
(c) The entrance distribution on C∗ is asymptotically uniform:

lim
β→∞

P� (X(τC∗) = η | τC∗ < τ�) = |C∗|−1 ∀ η ∈ C∗. (3.13)

(d) There exists a constant 0 < K = K(Λ, �c) <∞ such that

lim
β→∞

e−βΓE�(τ�) = K (3.14)
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with

Γ = H(C∗) = −U(2�2c − 4�c + 2) +Δ(�2c − �c + 2), (3.15)

and
lim
β→∞

P�(τ� > tE�(τ�)) = e−t ∀ t ≥ 0. (3.16)

(e) As Λ→ Z
2,

K(Λ, �c) ∼
3

4π�2c(�2c − 1)
log |Λ|
|Λ| . (3.17)

Part (a), together with a partial description of C∗ and the crude esti-
mate limβ→∞(1/β) log E�(τ�) = Γ , were proved in [19]. Parts (b)–(e)
were proved in [8].

Comparing Theorem 3.2(b) with Theorem 3.1(b), we see that the
critical droplet for Kawasaki is more complicated than for Glauber.
Once the dynamics has created a protocritical droplet (= quasi-square
plus protuberance without free particle), it must wait for the next par-
ticle to arrive from the boundary (which is the free particle in Fig. 6).
This takes a time of order eβΔ. Because Δ > U , this time is much
larger than eβU , the time for the dynamics to make moves that cost U .
Therefore the droplet will “explore” all shapes that can be reached
from its protocritical shape via a U -path, i.e., a path between two con-
figurations with the same energy that never goes more than U above
this energy. For instance, the protuberance may detach itself from the
side of length �c and reattach itself to the side of length �c − 1. But it
is also possible for particles to slide along the boundary of the droplet,
in a train-like motion around corners (see Fig. 7), so as to modify the
four bars in the annulus of the droplet.

c

c−1

1 0

Λ

Fig. 6. A critical droplet for model (II): The occupied sites lie inside the
shaded areas, the vacant sites outside.
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(1) (2) (3) (4) (5)

(6) (7) (8) (9) (10)

(11) (12) (13) (14) (15)

Fig. 7. Motion along the border of the droplet. Configurations (3–13) form a
U -path.

Theorem 3.1(d–e) is explained as follows. Write C to denote the set
of protocritical droplets. The average time needed to enter C∗ is

1
|C| |∂Λ| e

βΓ [1 + o(1)] as β →∞. (3.18)

Let π(Λ, �c) denote the average probability with respect to the uniform
entrance distribution that the critical droplet is exited in the direction
of � rather than �. Then the average number of attempts to go over
the hill after reaching the top is

1
π(Λ, �c)

[1 + o(1)] as β →∞. (3.19)

The product of (3.7) and (3.8) is the average crossover time, and so

K =
1

|C| |∂Λ|π(Λ, �c)
. (3.20)

Now,

|C| ∼ |Λ| 1
3
�2c(�

2
c − 1) as Λ→ Z

2, (3.21)

where the first factor comes from centering the droplet anywhere in Λ
not touching ∂Λ, while the second factor comes from a combinatorial
calculation counting the number of sizes and locations of the four bars
in the annulus. Moreover,
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|∂Λ|π(�c, Λ) ∼ 4π
log |Λ| as Λ→ Z

2. (3.22)

Indeed, the right-hand side is the probability that a particle detaching
itself from the critical droplet reaches ∂Λ and exits Λ before reattaching
itself. This probability is asymptotically independent of the shape and
the location of the critical droplet, due to the fact that the free particle
moves like a two-dimensional simple random walk (which is recurrent
on Z

2). By reversibility, the reverse motion has the same probability,
which is the left-hand side. Combining (3.20–3.22), we get (3.17).

In Theorem 3.1(a), an example of a configuration in S\C∗ is an
�c× (�c− 1) quasi-square plus a dimer at distance 1. For the dynamics,
this configuration is a dead-end. Indeed, one particle of the dimer must
jump back to the droplet and create a protuberance (at cost 0), and
the remaining free particle must attach itself next to this protuberance
(at gain U) to initiate the motion downhill to the �c × �c square.

3.3 Potential-Theoretic Approach

We give a sketch of the techniques that are used to obtain the fine
asymptotics of the average crossover time in Theorems 3.1(d–e) and
3.2(d–e). A key role is played by the notion of capacity between two
sets of configurations, in particular, between the metastable state and
the stable state. We refer to Section 3–5 in Bovier [4] for the general
background of this notion within the context of metastability and for
other applications.

Define

E(h) =
1
2

∑

η,η′∈X
μ(η)c(η, η′)[h(η)− h(η′)]2, h : X → [0, 1]. (3.23)

This is the Dirichlet form associated with the dynamics, whose argu-
ment is a potential function on the configuration space X . Given two
non-empty disjoint sets A,B ⊂ X , the capacity of the pair A,B is
defined as

CAP(A,B) = min
h : X→[0,1]
h|A≡1,h|B≡0

E(h), (3.24)

where the minimum runs over all potential functions whose restriction
to A and B equals 1 and 0, respectively. If we think of an electric
network with nodes labelled by X and with conductivities μ(η)c(η, η′)
between nodes η, η′ ∈ X , then E(h) is the energy produced by an electric
current flowing through this network when the potential on the nodes
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is given by h. The capacity is the minimal energy when the nodes of
A are kept at potential 1 and the nodes of B are kept at potential 0
(“Thompson’s principle”). The minimum in (3.24) is unique, and the
minimizer h∗ has the interpretation

h∗(η) = Pη(τA < τB) for η /∈ A ∪B. (3.25)

What is important about (3.24) is that upper bounds can be obtained
by inserting test functions for h, while lower bounds can be obtained
by removing transitions from X ×X (“Rayleigh’s short-cut rule”). This
gives great flexibility in the calculations.

We henceforth focus on model (II), but the claims made below apply
equally well to model (I). A key ingredient is the following fact, implying
that {�,�} is a metastable pair for low temperature.

Proposition 3.3. (den Hollander, Nardi, Olivieri and Scoppola [18])

For all η ∈ X\{�,�},

Γ (η, {�,�}) < Γ, (3.26)

where
Γ (A,B) = min

η∈A,η′∈B
min

ω : η→η′
max
ξ∈ω

[H(ξ)−H(η)] (3.27)

is the communication height between A,B ⊂ X , A ∩ B = ∅, A,B �= ∅.

Proposition 3.3 implies that no matter where the dynamics starts, it
reaches the set {�,�} faster than it manages to achieve the crossover
from � to �. In words, there are “no deep pits” in the energy landscape
that trap the dynamics for a time comparable to the crossover time.

The key to the fine estimate in Theorem 3.2(d–e) is the following
fact, relating the average crossover time to the capacity and relying
crucially on Proposition 3.3.

Proposition 3.4. (Bovier, den Hollander and Nardi [8])

E�(τ�) = [1 + o(1)]/[ZCAP(�,�)] as β →∞.

Thus, to estimate the average crossover time from � to �, it suffices to
estimate the capacity of the pair �,�. This proceeds in several steps.

(1) A crude a priori estimate yields that for every pair A,B there exist
constants 0 < C1 < C2 < ∞ (depending on A,B but not on β)
such that

C1 ≤ eβΓ (A,B)ZCAP(A,B) ≤ C2. (3.28)

The lower bound is obtained by picking a minimax path ω in (3.27)
and from (3.23) remove all transitions η → η′ that are not in ω. The
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upper bound is obtained by picking a test function h in (3.24) that is
≡ 1 on the Γ -valley aroundA and≡ 0 on the Γ -valley around B. (The
Γ -valley around a set of configurations S is the set of configurations
S ′ � S whose communication height with S is < Γ .)

(2) With the help of (3.28), it is possible to obtain sharp bounds on
the minimizer h∗ of (3.24) given in (3.25) via so-called renewal-type
estimates. These estimates show that h∗ is exponentially close (in β)
to 1 on the Γ -valley around � and exponentially close (in β) to 0
on the Γ -valley around �. Since the configurations with energy > Γ
are negligible, because of the Gibbs factor in (3.23) coming form
(2.7), it follows that the sharp asymptotics of CAP(�,�) = E(h∗) is
determined by the values of h∗ on S = S(�,�) and on ∂extS, the
exterior boundary of S.

(3) Due to the above, the variational problem in (3.24) on the full con-
figuration space X reduces to a variational problem restricted to
S∪∂extS. This reduced variational problem has a much simpler struc-
ture, and can be understood in terms of the geometry of the config-
urations that are critical droplets or are close to critical droplets.

(4) For Kawasaki, the reduced variational problem involves the creation
of a free particle when the droplet is protocritical, the motion of this
free particle towards the droplet, and the attachment itself. Since this
is a problem about simple random walk travelling between ∂Λ and
a protocritical droplet somewhere inside Λ, the reduced capacity can
be sharply estimated.

For Kawasaki, S ∪ ∂extS contains plateaus, wells and dead-ends,
and hence a closed form computation of K = K(�c, Λ) is not feasible.
Fortunately, for large Λ the details of the geometry of S∪∂extS turn out
to be only partly relevant, and the asymptotics of K can be identified,
resulting in (3.17). For Glauber, the reduced variational problem turns
out to be zero-dimensional, and K = K(�c, Λ) can be computed in
closed form, resulting in (3.6).

Remark: Most of the results described above can be extended to other
types of dynamics, such as Glauber dynamics for Ising spins with an
anisotropic interaction or in a staggered magnetic field, or Ising spins
subject to a parallel dynamics given by a probabilistic cellular automa-
ton (see den Hollander [17] for references). Similarly, most of the results
can be extended to three dimensions, despite the more complex geom-
etry of critical droplets (see Ben Arous and Cerf [2], den Hollander,
Nardi, Olivieri and Scoppola [18] for the necessary background).
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4 Lecture 3: Large Systems at Low Temperature
and Moderate Systems at Positive
Temperature, Conjectures

In this lecture we move away from finite systems and investigate what
happens in growing volumes, both at low and at positive temperature.
Most of what is described below consists of target theorems and work
in progress.

Glauber dynamics for large systems at low temperature was studied
in Dehghanpour and Schonmann [12], [13], Schonmann and Shlosman
[30], and Manzo and Olivieri [21], using the pathwise approach.
Current work focusses on trying to improve their results using the
potential-theoretic approach, and on extending the analysis to Kawasaki
dynamics.

4.1 Large Systems at Low Temperature

Glauber Dynamics

Let Λ = Λβ depend on β such that

|Λβ| = eΘβ , Θ ∈ [0,∞). (4.1)

Let

– R ⊂ X denote those configurations where the circumscribed rectan-
gles of all clusters of up-spins in Λβ are contained in non-interacting
protocritical quasi-squares (see Fig. 8).

The initial configuration X(0) of the dynamics is drawn according to
the conditional Gibbs measure

μR(η) =
μ(η)1R(η)
μ(R)

, η ∈ Xβ, (4.2)

Fig. 8. A configuration in R.
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where μ is defined in (2.7) and μ(R) =
∑
η∈R μ(η). Our goal will be to

estimate the first time a critical droplet appears anywhere in Λβ , i.e.,
the first exit time of R.

As before, we will be interested in the metastable regime

h ∈ (0, 2J), β →∞. (4.3)

Write Pη to denote the law of the dynamics X = (X(t))t≥0 starting
from X(0) = η, and put PμR =

∑
η∈R μR(η)Pη. Let

τRc = min{t ≥ 0: X(t) /∈ R} (4.4)

denote the first time the dynamics exits R. Write / for asymptotic
equality modulo constants.

Conjecture 4.1. (Bovier, den Hollander and Spitoni [9])

If
Θ ∈ [0, Γ −Ξ) with Ξ = h(�c − 2), (4.5)

then
EμR (τRc) / 1

|Λβ|
eβΓ as β →∞. (4.6)

The idea behind Conjecture 4.1 is simple. The dynamics grows and
shrinks droplets essentially independently in different local boxes. Con-
sequently, a critical droplet appears randomly in one of the local boxes,
after a time that is the local crossover time divided by the number of
local boxes in |Λβ |. This is the regime of homogeneous nucleation.
Γ is the local energy of the critical droplet, which plays the role of the

local activation energy for the crossover. Ξ is the local energy needed
to evaporate the largest subcritical droplet. The regime in (4.5) corre-
sponds to the situation where any subcritical droplet has a tendency
to evaporate in a time much smaller than the crossover time.

Kawasaki Dynamics

Keep (4.1). This time, let

– R ⊂ X denote those configurations where all clusters of particles in
Λβ are either strictly contained in a protocritical quasi-square plus
protuberance (recall Fig. 6), or are equal to a protocritical quasi-
square plus protuberance with an empty annulus Λ∗ of a size slightly
smaller than the typical interparticle distance (see Fig. 9).
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Λ

Λβ

�c

�c − 1

Fig. 9. A configuration in R.

The initial configuration X(0) of the dynamics is again drawn ac-
cording to (4.2). We run the dynamics associated with the Hamiltonian
in the second line of (2.1) without the activity term. Indeed, this term
is no longer needed, because Λβ is so large that it takes over the role
of the gas reservoir. In fact, we will supply Λβ with periodic boundary
conditions, so that no particle enters or exits Λβ at positive times. Our
choice to start from the conditional equilibrium with activity, given by
(4.2), is needed at time zero only, and is made for convenience. Thus,
the particle density inside Λβ is e−βΔ at time zero and remains fixed
in the course of time.

In order to have particles at all we must pick Θ > Δ. We will be
interested in the regime

Δ ∈ (U, 2U), Θ ∈ (Δ,∞), β →∞. (4.7)

Conjecture 4.2. (Gaudilliere, den Hollander, Nardi, Olivieri and Scoppola [16],

Bovier, den Hollander and Spitoni [9])

Suppose that �c ≥ 3. If

Θ ∈ (Δ,Γ −Ξ) with Ξ = 2U + (�c − 3)(2U −Δ), (4.8)

then

EμR (τRc) / β 1
|Λβ|

eβΓ as β →∞. (4.9)

Because of the low particle density, as before, droplets grow and
shrink more or less independently in different local boxes, causing
homogeneous nucleation.
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4.2 Moderate Systems at Positive Temperature

In equilibrium statistical physics, for a system that is at a first-order
phase transition a macroscopically large droplet of one phase inside the
other phase takes on the Wulff shape, i.e., the droplet minimizes its total
surface tension subject to a total volume constraint. This observation,
which is over a century old, has been put on a rigorous microscopic basis
since only fifteen years or so. For the two-dimensional ferromagnetic
nearest-neighbor Ising model at low temperature, Dobrushin, Kotecký
and Shlosman [14] proved that a large droplet of the plus-phase inside
the minus-phase has the Wulff shape. This result was subsequently
extended up to the critical temperature, and its proof was simplified,
by Pfister [26], Ioffe [20] and Pisztora [27].

The Wulff construction requires a careful coarse-graining analysis.
The microscopic phase boundary is approximated on a mesoscopic scale
by a polygon consisting of many segments, which decouple on the meso-
scopic scale. Each segment contributes to the surface tension in a way
that depends on its direction relative to the lattice axes. To handle
the fluctuations of the boundary around the polygon, large deviation
arguments are required. The polygon tends to a smooth curve in the
macroscopic limit, and this curve enters into the Wulff variational prob-
lem, whose solution is the actual phase boundary.

To study Wulff droplets in the presence of a stochastic dynamics is
part of non-equilibrium statistical physics and therefore is quite a dif-
ferent matter. The question of interest is whether macroscopically large
critical droplets for metastable transitions between two phases under a
stochastic local dynamics assume the Wulff shape or not.

In this lecture we allow the box Λ to grow but only moderately, in a
way that depends not on β but on the parameters in the Hamiltonian.

Glauber Dynamics

We suppose that Λ = Λh with

|Λh| = C
1
h
, 1� C <∞. (4.10)

We assume that β > βc, the critical inverse temperature at h = 0 for
Λ = Z

2. The system starts at X(0) = �, the Glauber dynamics is
applied for small h > 0, and the limit h ↓ 0 is taken. The dynamics
eventually brings the system to equilibrium, close to the plus-phase at
h = 0, but it needs a long time to do so. In the limit h ↓ 0, the critical
droplet becomes macroscopically large. The goal is to show that the
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critical droplet scales to the equilibrium Wulff shape and appears after
a time that scales like the exponential of the Wulff free energy. The
size of the box is taken to scale in such a way that the critical droplet
occupies a finite fraction of the box.

Theorem 4.3. (Schonmann and Shlosman [30])

For β > βc and C sufficiently large,

lim
h↓0
h log E�(τm(J,β)) =

W (J, β)2

4m(J, β)
, (4.11)

where τm(J,β) is the first time the total magnetization inside Λh equals
m(J, β), the spontaneous magnetization on Z

2, and W (J, β) is the total
surface tension of the Wulff droplet of unit volume.

Note that the left-hand side of (4.11) refers to a non-equilibrium quan-
tity, while the right-hand side only contains quantities from equilib-
rium. This is why the result in (4.11) is deep.

The idea behind (4.11) is that, in the macroscopic scaling limit, the
critical droplet has a length � that maximizes the free energy function

f(�) = −m(J, β)h�2 +W (J, β)�. (4.12)

(This is a macroscopic version of the parabola encountered in (2.15)!)
The maximum is taken at �max = W (J, β)/2m(J, β)h, giving free
energy

f(�max) =
W (J, β)2

4m(J, β)h
. (4.13)

This is the exponential of the time needed to create a droplet at a given
location.

Schonmann and Shlosman [30] analyze the problem also on Z
2 in-

stead of on Λh subject to (4.10). They show that, in infinite volume, the
critical droplet typically is not created close to the origin, but rather
is created far away and subsequently invades the origin by growing. As
a result, the exponential is three times smaller, because the critical
droplet may occur anywhere in a space-time cone of this smaller size
and invade the origin afterwards.

Kawasaki Dynamics

This time we suppose that Λ = ΛΔ with

|ΛΔ| = C
1

2U −Δ, 1 � C <∞. (4.14)
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We assume that β > βc, the critical inverse temperature for the
Hamiltonian without activity term for Λ = Z

2. The system starts at
X(0) = �, the Kawasaki dynamics is applied for Δ < 2U , and the limit
Δ ↑ 2U is taken. This is the limit of weak supersaturation, when the
critical droplet becomes macroscopically large.

Conjecture 4.4. (Bovier, den Hollander and Ioffe [7])

For β > βc and C sufficiently large,

lim
Δ↑2U

(2U −Δ) log E�(τρ(U,β)) =
W (U, β)2

2ρ(β, U)− 1
, (4.15)

where τρ(U,β) is the first time the particle density inside ΛΔ equals
ρ(U, β), the density of the liquid phase on Z

2, and W (U, β) is the total
surface tension of the Wulff droplet of unit volume.

The right-hand side of (4.15) is the same as that of (4.13), with J
being replaced by U/2, because of the link between the Hamiltonians of
models (I) and (II) in (2.1) (recall (2.9)). The reason is that, as already
observed above, the right-hand side of (4.15) only contains quantities
from equilibrium.

A proof of Conjecture 4.4 is currently being attempted, with the
help of the potential-theoretic techniques mentioned in Section 3.3, for
a simpler version of the model where the interaction is of Kac-Dyson
type, i.e., quasi-mean-field. The hard part is that, for growing volumes
at positive temperature, both spatial and temporal entropy need to be
controlled. We need to understand the typical way in which the dy-
namics grows and shrinks large droplets, absorbing and emitting large
numbers of particles with the surrounding gas phase in the box while
keeping the droplet close to the Wulff shape. Droplets are expected to
grow and shrink via “motion by curvature”.
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Part I. Fluctuations in Stochastic Lattice Gases

1 Introduction

One good way to learn about possible constructions of nonequilibrium
statistical mechanics proceeds via the study of simple model systems.
Traditionally, the so called stochastic lattice gases are playing there
a prime role. A very early example is the Ehrenfest model. Not only
was it important as one of the many urn models illustrating strategies
and results from probability theory and from statistics, but it remains
useful for learning about relaxation to equilibrium and about detailed
balance, see e.g. [29] where Mark Kac does not seem to hesitate in
calling the Ehrenfest model one of the most important models in all of
physics. We will encounter that Ehrenfest model in the next section.

Over the last decades, many other lattice gas models have been in-
vented. Often they obey simple updating rules and they are rather easy
to visualize and to simulate (at least today). Yet, their behavior is rich,
including sometimes clear examples of emergent behavior. The latter
refers to the organization of robust structures or patterns, of critical
behavior, and of phase transitions, which result from some collective or
cooperative behavior between the many interacting components. They
have appeared in interdisciplinary contexts, varying from models of
traffic, to models of turbulence or to models for the spreading of infec-
tions, in computer science, in economy etc. On the more mathematics
side, we have here an interesting ground for exploring and extending the
theory of spatially extended Markov processes. The role of the spatial
architecture of the processes has recently been more in the center of at-
tention, e.g. in discussions of processes on random graphs, small worlds
etc. In recent versions, the architecture (or graph) also undergoes a
dynamics, in interaction with the particles. Clearly these lattice gas
models have proven their use already. A few books with mathematical
and statistical mechanical introductions to the theory of lattice gases
include [30, 36, 56].

Many good references link stochastic lattice gases with fundamen-
tal problems in physics, be it in the context of turbulence or in the
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derivation of hydrodynamic equations. In the present notes, we bring
together a number of results in the construction of nonequilibrium sta-
tistical mechanics, as they appear for some simple stochastic lattice
gas. The emphasis will be mostly on formal relations, from which both
mathematical and physics treatments can find inspirations. We hope
that this provides some step in a wider understanding of nonequilibrium
issues in other and more realistic models. Indeed, one should remain
aware that stochastic lattice gases are often only effective tools. They
are Markovian from the start and their transition rates depend on some
ad hoc choices. They are stochastic and there is no specification of a
larger environment.

After a short reminder of aspects of a Markov dynamics for one
particle, we introduce the main models in Section 3. That is continued
in Section 4 where the steady state is further specified. In all that we
work with a finite one-dimensional system on which there is a particle
hopping in the bulk of the system and a birth and death process at the
two boundary sites. We consider a time-dependent version of the dy-
namics in Section 5. The main tool is provided by a Lagrangian set-up
in which a Girsanov formula specifies the action (Section 6). Section 7
gives the main fluctuation relations in the form of a Jarzynski identity
(relating the irreversible work with the change in free energy) and of a
fluctuation symmetry in the particle current (a so called steady state
fluctuation theorem). While the results are mainly well-known we are
not aware of a similar unifying presentation in the literature. There re-
main however very many nonequilibrium issues which are not treated
in these notes. Some remarks are devoted to them in the final sec-
tion, where we also describe the more general programme of dynamical
fluctuations theory.

2 One Walker

Consider the set K = {0, . . . , N} and the discrete time Markov chain
with transition probabilities p(x, x′) = x/N if x′ = x−1 and p(x, x′) =
1 − x/N if x′ = x + 1 for x, x′ ∈ K. One interpretation is to think of
the state x ∈ K as the number of particles in one of two vessels. The
total number of particles over the two vessels is fixed equal to N . At
each discrete time moment, one of the N particles is randomly selected
and moved to the other vessel from where it was. That model is known
as the Ehrenfest model (or dog-flea model).

As a mathematical object we have here an irreducible (but not aperi-
odic!) Markov chain (xn) that satisfies the condition of detailed balance
with respect to the stationary measure
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ρ(x) = 2−N
N !

x!(N − x)! , x ∈ K

That condition of detailed balance

p(x, x′) ρ(x) = p(x′, x) ρ(x′)

expresses the time-reversibility of the stationary process. Indeed, let
P ρ denote the stationary process on KZ and define yn = x−n. The
process (yn) is Markovian with stationary law ρ. Its law is denoted by
P ρΘ where Θ stands for time-reversal. We show that P ρΘ = P ρ as a
consequence of the condition of detailed balance. The basic observation
is that the transition probability for the process (yn) is via Bayes’
formula

q(y, y′) = Prob[yn+1 = y′ | yn = y] = p(y′, y)
ρ(y′)
ρ(y)

= p(y, y′)

Therefore, the condition of detailed balance is equivalent with the time-
reversibility.

There is an easy way to generalize the above set-up. Let us first
make the step to continuous time. We are now speaking about rates
c(x, y) ≥ 0 (or, transition probabilities per unit time) for the transition
x→ y. If we assume that

c(x, y) = a(x, y) e[V (x)−V (y)]/2

where a(x, y) = a(y, x) is symmetric, then still

c(x, y)
c(y, x)

= eV (x)−V (y) (2.1)

and ρ(x) ∝ exp[−V (x)] is a reversible measure. It is remarkable that
there remains a freedom in the choice of the symmetric function a(x, y).

A new interpretation arises when thinking of the set {0, 1, . . . , N}
as the sites of a lattice interval, with the usual nearest neighbor con-
nections. The rates c(x, y) could be taken non-zero only if y = x± 1 in
which case we have a nearest neighbor walk. The condition of detailed
balance (2.1) assures that the walker will not drift; there is a potential
landscape V (x), x = 0, . . . , N which could be periodically repeated to
cover all of Z if wished.

There are ways to break detailed balance. One could for example
insert a non-zero transition rate for moving between the states (sites)
0 ↔ N , and then take c(x, x+1) = p, c(x, x−1) = q �= p, N+1 ≡ 0. In
that case, say with p > q there is a drift that the particle moves more
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x→ x+1 than x→ x−1; there appears a net current. More generally,
we can think of parameterizing the rates via

c(x, y) = a(x, y) e[V (x)−V (y)]/2 es(x,y)/2

where s(x, y) = −s(y, x) would be antisymmetric. Of course, that does
not yield a unique decomposition as we can e.g. put the difference
V (x)−V (y) inside s(x, y). On the other hand, the s(x, y) is of the form
s(x, y) = U(x) − U(y) if and only if it satisfies a gradient condition,
that s(x, y) + s(y, z) + s(z, x) = 0 for all triples (x, y, z). The more
important point however is that this term s(x, y) has often a relevant
physical interpretation. In what follows we will see it related to the
entropy production. The entropy production is a physical notion that
has arisen within irreversible thermodynamics, see e.g [21]. It goes well
with considerations close to equilibrium.

The influence of the time-symmetric factor a(x, y) is less understood.
The following sections will study some of the aspects above for multi-

particle models. We now have a (possibly variable) number of particles
and they move on the lattice following certain hopping rules. The effect
of having many particles can result in (simpler) hydrodynamic behav-
ior for macroscopic variables such as the density profile, but we will
concentrate on the fluctuations instead.

3 Stochastic Lattice Gases

We start with a description of what is typically involved in stochastic
lattice gases. We do not give the most general definitions but we specify
to one special class.

3.1 States

By a lattice gas we understand a collection of particles whose positions
are confined to the sites of a lattice. In some models the particles still
have a momentum, most often with a finite number of possible values.
Or, the particles can have extra decorations such as color or spin. Here
we do not consider that.1 The system thus consists of identical particles
that can jump from site to site on the given architecture. The states
of the system are assignments to each site of the number of particles.

1 An important ingredient of the Hamiltonian (or symplectic) structure is thus lost.
In particular the kinematical time-reversal that would normally change the sign
of the velocities is absent.
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To be specific we consider the finite linear chain ΛN = {−N,−N +
1, . . . , 0, 1, . . . , N − 1, N}. The endpoints i = ±N in ΛN will play a
special role in what follows; we call them the boundary of the system
while the other sites are in the bulk. Two sites i, j are nearest neighbors
when j = i± 1.

We allow at most one particle per site i. We say that site i can be
vacant or occupied. The state space (or the configuration space) is the
finite set K = {0, 1}ΛN . Elements of K are denoted by η, η′, ξ, . . . and
we write η(i) ∈ {0, 1} for the occupation at site i ∈ ΛN .

3.2 Energy, Entropy, and Particle Number

One imagines a function H typically referred to as the Hamiltonian of
the system,2 that measures the energy of the state η. There is a great
freedom of choice and all depends on the context or on the specific
purpose. It does not hurt however to suppose something specific, say
an energy function consisting of two terms:

H(η) = −B
N∑

i=−N
η(i)− κ

N−1∑

i=−N
η(i) η(i+ 1), (3.1)

where B and κ are some constants. The first term contributes an energy
−B per particle being present in the system and the second term takes
into account some form of nearest neighbor interaction related to the
relative concentration of particles on neighboring sites.

Speaking of energy reminds us of its conservation law. We can in-
deed imagine that our system is in thermal contact with a very large
heat bath at inverse temperature β (Boltzmann’s constant is set equal
to one), and for which all relevant changes are determined by the
transitions in the system. In particular, every change H(η′) − H(η)
in energy of the system is accompanied with the opposite change
ΔE(η, η′) = −(H(η′) − H(η)) of energy in the bath.3 Imagining that
2 It is of course not a Hamiltonian in the strict sense of analytical mechanics. The

word Hamiltonian refers here more to the quantum world where one considers for
example the hopping of electrons in a crystal structure. A mathematically precise
correspondence, also for the dynamical properties, can often be achieved via the
so called weak coupling limit or within the framework of Fermi’s Golden Rule.

3 In a more microscopic set-up, including a description of the degrees of freedom
in the heat bath, one would need to specify a more exact decomposition of the
total energy into the system part and the part that belongs to the reservoir.
There would also be interaction terms, the coupling, that contain both system
and reservoir variables. Obviously, some convention is then needed of what is
system and what is reservoir variable.
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the energy change of the reservoir is thermodynamically reversible, we
associate to it a change of entropy (or an entropy production) in the
reservoir equal to

ΔSres = βΔE(η, η′) = −β(H(η′)−H(η))

In other words, every change η → η′ in the system’s configuration
entails an entropy flux, that is β times the heat dissipated in the ther-
mal reservoir.4 For equilibrium purposes with just one heat bath, the
relevant thermodynamic potential is the Helmholtz free energy. Its sta-
tistical mechanical version is

F = − 1
β

logZ , Z =
∑

η∈K
e−βH(η)

Observe that if we change some parameter in H, e.g. the coupling
coefficient κ in (3.1) (for fixed temperature), then the change in free
energy F = F (κ) equals the expected change in energy:

dF
dκ

=
〈dH

dκ

〉
, H = Hκ

where
〈g〉 =

1
Z

∑

η∈K
g(η) e−βH(η)

is the thermal expectation.
Another important observable is the particle number. We write

N[j,k](η) =
k∑

i=j

η(i)

for the total number of particles in the lattice interval [j, k]∩ΛN , −N ≤
j ≤ k ≤ N . By construction, here we have that the particle numbers
N[j,k] ≤ 2N + 1 are a priori uniformly bounded. The total number of
particles is denoted by N = N[−N,N ]. Making the correspondence with
a gas again makes us think of a conservation law, now of the total
number of particles. In what follows, we imagine that the system is
also in contact with a particle reservoir at its boundary. Through the
4 On a scale where one supposes that the η give the full microscopic description

of the system, there is no associated change of entropy in the system. The total
change of entropy (also called, the entropy production) is then also equal to
−β(H(η′) − H(η)). Most of the time however, there is a further lower level of
description of the system variables with an associated degeneracy.
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endpoints i = ±N particles can enter or leave the system. We can also
speak of a birth or a death of a particle at these sites. In Section 4.2
we will introduce the particle currents. As particles can carry energy
(see e.g. the first term in (3.1)), the flow of particles in and out of the
system can also contribute to the change of energy in the reservoir, and
hence to changes in entropy.

The equilibrium ensemble that allows both the exchange of energy
and of particles is the grand-canonical one. It gives probabilities

P
β,a[η] =

1
Z e

a
∑
η(i) e−βH(η) (3.2)

where Z = Z(a, β,N) is a normalization factor. The constant a is called
the chemical potential (which is the standard term up to a factor β−1)
and in equilibrium it refers to and it is determined by the concentration
of particles in the (imagined very large) environment.

3.3 Dynamics

The dynamics is given by a continuous time Markov process on K. We
distinguish two modes of updating:

• A particle can jump (or hop) to nearest neighbor sites. That is a
diffusion mechanism. We will not add external fields to the dynamics
not to impose a bulk drift or bias;

• Particles can leave or enter the system at the boundary. That is a
reaction mechanism. The system will be boundary driven.

We introduce some further notation to formalize the dynamics. As we
only consider symmetric hopping, it is useful to introduce the transfor-
mation

ηi,j(k) =

⎧
⎪⎨

⎪⎩

η(k) if k �= i, k �= j;
η(i) if k = j;
η(j) if k = i

(3.3)

That defines the configuration obtained from η after switching the oc-
cupation of the sites i, j. We allow only the hopping of particles to
neighboring sites j = i ± 1. The rate of the transition due to that
diffusion mechanism is taken as

C(i, j, η) = exp
[
−β

2
(H(ηi,j)−H(η))

]
, |i− j| = 1 (3.4)

where H(ηi,j) is the energy function after the transition and H(η) is
that corresponding to the initial configuration.
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Analogously, we define the rate of birth and death η → ηi of the
particles as

C(i, η) = e−aiη(i) exp
[
−β

2
(H(ηi)−H(η))

]
(3.5)

where H(ηi) is the energy function after the transition to ηi, the new
configuration after the birth or the death of a particle at site i:

ηi(k) =

{
1− η(k) if k = i
η(k) if k �= i

(3.6)

To be definite we take births and deaths only at the boundary sites
i = −N,N .

The physical interpretation of the dynamics is quite simple. Think
of a one-dimensional channel in which particles diffuse while they enter
or leave the system at its boundary. A biophysical realization seems to
be found in the physics of ion channels connecting the inside and the
outside of a living cell. The channel is a sort of opening or gate in the
cell’s membrane through which charged particles can move from higher
to lower concentration, or following the gradient in electric potential
etc. Here the relevant parameters are the values a±N which in fact
represent the (different) chemical potentials of the two reservoirs at
the outer edges.

With these definitions the Master equation governing the temporal
behavior of probability measures on K is given by

d
dt

Pt(η) =
N−1∑

i=1

[C(i, i+ 1, ηi,i+1)Pt(ηi,i+1)− C(i, i+ 1, η)Pt(η)]

+ C(−N, η−N )Pt(η−N )− C(−N, η)Pt(η)
+ C(N, ηN )Pt(ηN )− C(N, η)Pt(η)

(3.7)

That equation shows how the probability to find a given configuration
in the system evolves in time. Alternatively, the generator L is given by

d
dt
〈f(ηt)〉 = 〈Lf(ηt)〉 (3.8)

for functions (“observables”) f on K, and where 〈·〉 takes the expecta-
tion over the Markov process, including some (as yet unspecified) initial
distribution. Explicitly,
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Lf(η) =
N∑

i=1

C(i, i+ 1, η)[f(ηi,i+1)− f(η)]

+ C(−N, η)[f(η−N )− f(η)] + C(N, η)[f(ηN )− f(η)] (3.9)

Let us make a simple exercise by plugging in f(η) = η(i) for some
fixed i and by taking β = 0 in (3.4)–(3.5). The corresponding evolution
equation is

d
dt
〈ηt(i)〉 = 〈ηt(i− 1) + ηt(i+ 1)− 2ηt(i)〉

when i �= −N,N , while for i = ±N ,

d
dt
〈ηt(i)〉 = 〈ηt(i∓ 1)− ηt(i) + e−aiηt(i)[1− 2ηt(i)]〉

Apparently, these equations are closed in the density variables 〈ηt(i)〉,
i ∈ ΛN . In particular, putting their left-hand sides equal to zero, we
get the stationary value 〈η(i)〉 = Ci + D for some constants C and
D that depend on N and on the values a±N . One checks that a−N =
aN = a if and only if C = 0, D = 1/(1 + exp(−a)). When C �= 0,
then there is a linear density profile with slope ∼ 1/N . Obviously,
when repeating that calculation for β �= 0, we run into a difficulty:
the equation for the 〈ηt(i)〉 is no longer closed but there is a coupling
with higher order correlation functions such as 〈ηt(i) ηt(i + 1)〉. That
feature is very generally true and it implies that we cannot simply solve
the equations.5 The stationary distribution is in general only implicitly
known, as solution of the (time-independent) Master equation (3.7)
with the left-hand side set zero.

3.4 Path-space Measure

One has to remember that a Markov process is a special probability
distribution on paths. In our case, we have piecewise-constant paths.
A path ω over the time-interval [0, τ ] starts from an initial config-
uration η0 after which it changes into ηt1 , ηt2 , . . . at random times
t1, t2, . . . To be more precise we must add what is the configuration
at the jump times as well. That is just a convention, and we take it

5 The problem appears in all nontrivial dynamics for many particle systems. The
resulting hierarchy of equations is sometimes referred to as the BBGKY-hierarchy,
referring in particular to the hierarchy of equations that appear in kinetic gas
theory for the various particle distribution functions. The study of possible ways
of closing the hierarchy is a major concern in nonequilibrium physics.
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that ηtk−1
= ηtk− and ηtk = ηtk+, or, the step-function is continuous

from the right. An important transformation on path-space concerns
the so called time-reversal Θ in which (Θω)t = ωτ−t, up to irrelevant
modifications at the jump times making Θω again right-continuous.

The random times are called the jump times of the process. The
Markov process assigns a probability law to these times and to the
corresponding transitions. There are two ingredients: the waiting time
and the transition step. The waiting time is exponentially distributed
with a weight λ(η) that depends on the present configuration η. That
waiting time is directly (and inversely) related to the escape rate

λ(η) =
∑

η′

W (η → η′)

We will use the notation W (η → η′) when indicating one allowed but
general transition rate. The second ingredient sits in the transition rates
as we have them introduced before. When the waiting time is over, a
new configuration is chosen so that for time t ↓ 0,

Prob[ηt = η′ | η0 = η] = (1− λ(η) t) δη,η′ +W (η → η′) t+ o(t)

A more explicit realization of that path-space measure goes via
Girsanov’s formula, see Section 6.

4 Steady State

4.1 Detailed Balance

One observes from the definition (3.4) that:

C(i, j, η)
C(i, j, ηi,j)

=
exp

[
−βH

(
ηi,j

)]

exp [−βH (η)]
=

P
β,a[ηi,j ]
Pβ,a[η]

(4.1)

where we have inserted the ratio of probabilities according to (3.2).
That is verified for all values a. Furthermore, with the definition (3.5)
we have

C(i, η)
C(i, ηi)

=
exp[−aiη(i)]

exp[−ai(1− η(i))]
exp

[
−βH

(
ηi
)]

exp [−βH (η)]
, i = ±N (4.2)
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Comparing with formula (3.2), still for i = ±N and for a−N = aN = a,

C(i, η)
C(i, ηi)

=
P
β,a[ηi]

Pβ,a[η]
(4.3)

Summarizing, when the particle reservoirs left and right have equal con-
centration, then the system dynamics satisfies the condition of detailed
balance

W (η → η′)
W (η′ → η)

=
P
β,a[η′]

Pβ,a[η]
(4.4)

for all allowed transitions η → η′ and corresponding transition rates
W (η → η′). Under that same condition a−N = aN = a we thus have
that (3.2) is a reversible stationary measure. The corresponding process
is the steady state for equilibrium conditions.

Observe that if we consider unequal rates at the boundaries a1 �= aN
then we could still try

P
β,a1,aN (η) =

1
Z

exp[−βH(η)] exp[a1η(1) + aNη(N)] (4.5)

as a candidate stationary distribution. In that case the analogue of
(4.3) is still verified. Yet, the condition (4.1) now fails.

4.2 Nonequilibrium Model

Now comes the question what happens when a1 �= aN . Let us first
consider the left boundary of the system, for which we can write, see
(4.2),

C(−N, η)
C(−N, η−N )

= e−β[H(η−N )−H(η)]−a−NJ�(η,η
−N ) (4.6)

where J�(η, η−N ) = 1 when the particle leaves the system via the site

−N , i.e., η(−N) = 1, and J�(η, η−N ) = −1 when a new particle enters,
i.e., η(−N) = 0. That is an antisymmetric current of particles, taking
positive when the particles leave the system. In the same way we define
the current Jr(η, η′) = 1 when η(N) = 1, η′ = ηN and J�(η, η

′
) = −1

when η(N) = 0, η′ = ηN . The currents are zero otherwise.
Taking all transitions together, we have

W (η → η′)
W (η′ → η))

= e−β[H(η′)−H(η)]−a−NJ�(η,η
′)−aNJr(η,η′) (4.7)
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One recognizes the change of entropy in the environment:

S(η, η′) = βΔE(η, η′)− μ�ΔN�(η, η′)− μrΔNr(η, η′)

where μ� = a−N respectively μr = aN are the chemical potentials (up
to some factor β that we have ignored) of the particle reservoirs left
and right, and J� = ΔN�, Jr = ΔNr are the changes in particle number
in the left, respectively right particle reservoir. The form (4.7) or

W (η → η′)
W (η′ → η)

= eS(η,η′)

is known as that of local detailed balance.6

The currents J� and Jr appear in the conservation law for the par-
ticle number. The sum of these currents equals the number of particles
that leave the system,

J�(η, η′) + Jr(η, η′) = N (η)−N (η′) (4.8)

or

a−NJ�(η, η′) + aNJr(η, η′) = (a−N − aN )J�+ aN (N (η)−N (η′)) (4.9)

From now on, we write aN = a, a−N = a+ δ so that

W (η → η′)
W (η′ → η)

=
P
β,a[η′]

Pβ,a[η]
e−δJ�(η,η

′)

The parameter δ thus measures some distance to the equilibrium sit-
uation, and enables the tentative terminology of close versus far from
equilibrium.

As above we define the bulk currents Ji(η, η′) to be +1 if in the
transition η → η′ a particle moves over the bond i → i+ 1, and equal
to −1 if a particle moves i← i+1. More generally,7 we consider a path
ω = (ηt)τt=0 and currents Ji(ω), i = −N, . . . , N − 1, defined by

Ji(ω) = Ji(η0, ηt1) + Ji(ηt1 , ηt2) + . . .+ Ji(ηtn−1 , ητ )

6 Remark that in (4.7) a possible time-symmetric prefactor to the rates (3.5) or
(3.4) will never appear; there is only the part that is antisymmetric under η ↔ η′.
The fact that the entropy production appears as the source term of the breaking
of time-reversal symmetry, is no accident but it is related to more general con-
siderations that here are simply applied in order to obtain a reasonable physical
interpretation of our effective dynamics, see e.g. [38, 40].

7 In fact and throughout we call current what is more like a time-integrated current,
or a change of particle number.
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In particular, Jr = JN and for i < k,

Ji(ω)− Jk(ω) = N[i+1,k](ητ )−N[i+1,k](η0)

J�(ω) + J−N (ω) = η0(−N)− ητ (−N) (4.10)

Observe that the currents Ji are extensive in the time τ .
All of that is related to the process, be it transient or be it steady.

Except for the following section however, we will be mostly interested in
the steady state regime. It is easy to verify that we have here a unique
stationary distribution ρ. It satisfies the time-independent Master equa-
tion (3.7) (zero left-hand side). Corresponding to ρ there is then a sta-
tionary process with distribution P ρ. If we look at expectations in the
stationary process we write 〈 · 〉ρ. From the conservation laws (4.8) and
(4.10) we have

〈J�〉ρ = −〈Jr〉ρ = −〈Ji〉ρ, i = −N, . . . , N − 1

There are alternative expressions for these expectations by using the
dynamical equations (3.8). For example,

1
τ
〈Ji〉ρ = 〈C(i, i+ 1, η)(η(i)− η(i+ 1)〉ρ = 〈1− η(N)[1 + e−a]〉ρ

5 Time-dependent Dynamics

5.1 Modifications with respect to Section 4

Nonequilibrium conditions can be obtained in a variety of ways. The
above gives a set-up for boundary driven steady states. Another way
of driving the system away from equilibrium is by applying an external
bulk field. We consider here a modification which also frustrates the
system (as it cannot simply relax to equilibrium). We remain with the
same states but the updating becomes time-dependent. The idea is
that the values of parameters in the Hamiltonian are changed while
the dynamics enrolls.

We have a time-dependent Hamiltonian Ht so that the transition
rates Wt(η → η′) are also depending on the moment t of the jump
η → η′. For example, the rate for exchanging the occupation at sites i
and j = i± 1 is

Ct(i, j, η) = exp
[
−β

2
(
Ht(ηi,j)−Ht(η)

)]
, |i− j| = 1 (5.1)

(compare with (3.4)) depending on the time t.
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There is no longer a very good sense in which we can speak about
the stationary distribution. Still we can consider for each Ht, t ∈ [0, τ ],
the corresponding Gibbs distribution

ρt(η) =
1
Zt
ea

∑
η(i) e−βHt(η) (5.2)

where Zt = Zt(a, β,N) is now also time-dependent. There is an asso-
ciated free energy

At = − 1
β

logZt (5.3)

In the time-dependent case, we will only work with the dynamics
for which δ = 0, a−N = aN = a fixed, i.e., there is just one particle
reservoir and one heat bath reservoir.8

5.2 Work and Heat

When there is an energy exchange between system and reservoir, there
is heat. For a history ω = (ηt)τ0 where the jumps in the configuration
happen at times t1, t2, . . . tn, the total heat Q transferred to the system
is the sum of differences of energy:

Q = Ht1(ηt1)−Ht1(η0) +Ht2(ηt2)−Ht2(ηt1) + . . .
+Htn(ητ )−Htn(ηtn−1) (5.4)

On the other hand, the work W performed upon the system is a sum
of changes of the Hamiltonian at fixed configurations:

W = Hτ (ητ )−Htn(ητ ) +Htn(ηtn−1)−Htn−1(ηtn−1) + . . .
+Ht1(η0)−H0(η0) (5.5)

Therefore, as an expression of the first law of thermodynamics,

Q+W = Hτ (ητ )−H0(η0) (5.6)

is the total change of system energy between the initial and the final
configurations η0 and ητ in the path ω.

8 We can of course make a dynamics such that at every moment the distribution
Pt = ρt exactly coincides with (5.2). We could e.g. take a transition rate W̄t(η →
η′) = ρt(η

′). One can think of it as admitting an infinitely fast relaxation of the
equilibrium process. Alternatively, one can think of an ultra-slow time-dependence
in Ht so that, before any change, the system has already relaxed to the equilibrium
distribution corresponding to the instantaneous value.
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6 Lagrangian Set-up: Girsanov Formula

As we have seen in the course of our computation around and below
(3.9), the evolution equations give a hierarchy of equations for the var-
ious correlation functions of the stationary distribution. Solving them
is like diagonalizing a large matrix9 and it is not even clear whether
it would always permit us to extract the most relevant information.
A more global characterization of the stationary distribution is perhaps
obtained by going to a space-time picture. On that level the process is
space-time local and explicit. The variables are the histories or trajec-
tories of the system. It brings us in line with a Lagrangian approach to
statistical mechanics, [38], as pioneered by Onsager and Machlup.

Given two Markov processes on the same space K, we can consider
two path-space measures P and P̄ with corresponding escape rates λ
and λ̄, and transition rates W and W̄ . We consider all paths on the
interval [0, τ ] and we assume that for all η,

{η′,W (η → η′) �= 0} = {η′, W̄ (η → η′) �= 0}

We can then look for the density of P with respect to P̄ . That density is
a Radon-Nikodym derivative and can be written down quite explicitly
in the so called Girsanov formula:

dP

dP̄
(ω) = exp

[
−

∫ τ

0

(
λ(ηt)− λ̄(ηt)

)
dt+

∑

t≤τ
log

W (ηt− → ηt)
W̄ (ηt− → ηt)

]
(6.1)

when restricted to events that are measurable from the trajectory in
[0, τ ]. The last sum in the exponential is over the jump times, as they
appear in the path ω. We have assumed here that the two processes P
and P̄ start from the same configuration. If they have different initial
distributions ν and ν̄, then a prefactor ν(η)/ν̄(η), ω0 = η, must be
added to the right-hand side of the Girsanov formula (6.1). The formula
remains intact when the process is not time-homogeneous. One then
adds the correct time-dependence to the escape and to the transition
rates.10

9 In fact, the generator of a Markov dynamics need not even be diagonalizable.
That is a possible consequence of the breaking of detailed balance.

10 The formula is also not really restricted to Markov processes, or to finite state
spaces. The more useful way of considering that formula is as a generalization
of the Boltzmann-Gibbs formula (3.2), where the essential input is that one can
make sense of what is written in the exponential as a sum of quasi-local terms.
Here we can speak about the action as a sum of a local Lagrangian. Indeed, if we
write out the rates W (η → η′) of our stochastic lattice gas, and we take P̄ say
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Our application of the Girsanov formula will concern time-reversal.
If we have a distribution P on paths, then its time-reversal PΘ is
obtained via

dPΘ

dP 0 (ω) =
dP

dP 0 (Θω)

for an arbitrary process P 0 which is reversible. The dependence on
initial configurations is again ignored, but it is essential in the consid-
eration of the time-reversal invariant process P 0.

7 Fluctuation Relations for the Entropy Production

7.1 Jarzynski Equality

Recall the set-up for the time-dependent dynamics in Section 5. We
take the case where a1 = aN = a. The Jarzynksi identity is a relation
between the work W of (5.5) and the change in free energy (5.3). In
the context of stochastic lattice gases, we get it as

E
a
ρ0 [e

−βW ] = e−βΔA, (7.1)

The left-hand side is the expectation in the time-dependent dynam-
ics with fixed chemical potential (left and right) equal to a and with
Hamiltonian Ht at inverse temperature β, started from equilibrium ρ0
at time t = 0. The right-hand side contains the difference

ΔA = Aτ −A0, (7.2)

of free energies11 (5.3).

corresponding to β = 0, a−N = aN = 0 we obtain there a sum over space-time of
local interaction terms. Without trying to formalize the idea, see however [39], one
can thus consider the stationary distribution to be the projection (or restriction)
of that space-time path-space measure to an equal time layer, see e.g. [34]. There
is no a priori reason why that projected measure should inherit a spatial locality,
see e.g. [44].

11 To make sure, there is no assumption that at any future time t > 0 (includ-
ing at time τ) the distribution should be the ρt of (5.2). We are starting from
equilibrium at time zero, but then the system is most likely away from instan-
taneous equilibrium with respect to the Hamiltonian Ht. Yet, the result of (7.1)
is a statement about equilibrium free energies. We can measure these (and how
they possibly depend on some parameter) via some nonequilibrium procedure.



A Selection of Nonequilibrium Issues 265

Proof. To prove (7.1) we make a first application of the Girsanov for-
mula. The two distributions correspond to our time-dependent process
P a
ρ0 on the one hand and to the time-reversed process P̄

a
ρτ
Θ on the

other hand. By P̄
a
ρτ

we mean the process started at time zero from
the distribution ρτ and with time-reversed protocol, i.e., the rates are
W̄t =Wτ−t.

We have therefore for a fixed path ω with jump times t1, . . . , tn in
the interval [0, τ ], that

dP a
ρ0

dP̄
a
ρτ
Θ

(ω) =
ρ0(ω0)
ρτ (ωτ )

expR(ω) (7.3)

with, from (6.1),

R =
Wt1(η0 → ηt1)Wt2(ηt1 → ηt2) . . .Wtn(ηtn−1 → ητ )
Wtn(ητ → ηtn−1) . . .Wt2(ηt2 → ηt1)Wt1(ηt1 → η0)

(7.4)

By using the detailed balance relations

Wt(η → η′)
Wt(η′ → η)

= exp[−β(Ht(η′)−Ht(η)) + a(N (η′)−N (η))]

and combining that with the expression (5.4) for the heat, the ratio
(7.4) reduces to

R(ω) = e−βQ ea[N (ητ )−N (η0)]

Hence, looking back at (7.3) and substituting (5.2), (5.6) and (7.2),
we have

log
dP a

ρ0

dP̄
a
ρτ
Θ

(ω) = −βQ(ω) + log
Zτ
Z0
− β[H0(η0)−Hτ (ητ )]

= β [W(ω)−ΔA] (7.5)

The Jarzynski equality (7.1) is then an easy consequence of the
normalization of path-space measures:

∫
dP a

ρ0(ω)
dP̄

a
ρτ
Θ

dP a
ρ0

(ω) = 1 (7.6)

For further background information on these relations between irre-
versible work and free energy differences, one can check e.g. [7, 25, 38].
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7.2 The Direction of Particle Current

We come back to the time-homogeneous nonequilibrium process as we
had it first in Section 4.2. Physically we expect that there will be a
particle current flowing from higher to lower concentration. To be spe-
cific, let us assume that δ ≥ 0, a−N ≥ aN , so that the physical picture
suggests that the mean particle current 〈Ji〉ρ ≥ 0. The question is how
to actually see that. Remember that we do not know a thing about the
stationary distribution ρ in general. Nevertheless the direction of the
particle current will easily follow within our set-up.

From the Girsanov formula (6.1) for P ρ with respect to P ρΘ, both
started in the stationary distribution ρ, we have

dP ρ

dP ρΘ
(ω) =

ρ(ω0)
ρ(ωτ )

exp [−β (H(ωτ )−H(ω0)) + aΔN − δJ�(ω)] ,

(7.7)
Again from the normalization we have:

∫
dP ρ(ω)

dP ρΘ

dP ρ
(ω) = 1.

and hence, by concavity,
∫

dP ρ(ω) log
dP ρΘ

dP ρ
(ω) ≤ 0.

But, from (7.7) and by stationarity

0 ≤
∫

dP ρ log
dP ρ

dP ρΘ
(ω) = −δ〈J�〉ρ = δ〈Ji〉ρ (7.8)

We conclude that
δ〈Ji〉ρ ≥ 0 (7.9)

which shows that the average direction of the particle current depends
only on the sign of δ. See [42] for a very similar analysis in the case
of heat conduction. To get a strict inequality 〈Ji〉ρ > 0 is also possible
for δ > 0; it suffices to see that there is a non-zero probability that the
current Ji as a function of the path ω is not constant equal to zero even
when ω0 = ωτ .

7.3 Fluctuation Theorem

The previous results were all a direct consequence of the normalization
condition applied to the Radon-Nikodym derivative (6.1) between two
path-space measures. Here we go for a result that is somewhat more
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detailed and concerns a symmetry in the fluctuations of the current.
We follow the method of [38, 39, 43] but the present model can also be
treated via [35].

We fix an i = −N, . . . , N−1 and consider the current Ji as function
of the path over the interval [0, τ ]. Define the generating function q(λ),
λ ∈ R by

q(λ) = lim
τ↑+∞

1
τ

log〈e−λJi〉ρ (7.10)

The limit exists by the Perron-Frobenius theorem, and is independent
of i = −N, . . . , N − 1 because of (4.10). The fluctuation symmetry is
that

q(λ) = q(δ − λ) (7.11)

Before providing a proof observe that q(λ) is the Legendre transform
of the rate functions of large deviations for Ji. The interested reader
is referred to the literature on large deviations (and the Gärtner-Ellis
theorem in particular) for more details, see e.g. [9]. The idea is that

P ρ[Ji * τj] * e−τ I(j), τ ↑ +∞ (7.12)

with
I(j) = inf

λ
(−λj − q(λ)) (7.13)

Substituting the identity (7.11), we get

I(j) = inf
λ

(
(−δ + λ)(−j)− q(δ − λ)

)
− δ j = −δ j + I(−j) (7.14)

or
I(j)− I(−j) = −δ j (7.15)

That can be again translated to an identity for (7.12):

P ρ(Ji/τ * j)
P ρ(Ji/τ * −j)

* eτ δ j (7.16)

The interpretation of that expression is that there exists a relation be-
tween the probabilities of having a current +j and −j; the probability
of having a particle current in the direction opposite to the expected one
(δj > 0) is exponentially small with τ → +∞. The formula (7.16) has
appeared before and many papers have been devoted to proving it in a
variety of contexts. It first appeared in the context of smooth dynamical
systems where it concerned the fluctuations of the phase space contrac-
tion, [17, 16, 54], and the result has become known as the (steady state
Gallavotti-Cohen) fluctuation theorem. We now prove (7.11).
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Proof. By definition and since Ji(Θω) = −Ji(ω),

〈e−λJi〉ρ =
∫

dP ρ(Θω) eλJi(ω)

Next we insert the Radon-Nikodym derivative
∫

dP ρ(ω)
dP ρΘ

dP ρ
(ω) eλJi(ω) =

∫
dP ρ(ω) exp[Δ− δJi(ω)] eλJi(ω)

(7.17)
where, via (6.1) or via (7.7),

Δ = log
ρ(ωτ )
ρ(ω0)

+β (H(ωτ )−H(ω0))−aΔN + δ(J�(ω)+Ji(ω)) (7.18)

Notice that |ΔN|=|N (ωτ )−N (ω0)| ≤ 2N+1. Further, | log ρ(ωτ )/ρ(ω0)|
is also bounded because at any rate, ρ(η) �= 0, η ∈ K. Finally, there is
the conservation law

J�(ω) + Ji(ω) = −N[−N,i](ωτ ) +N[−N,i](ω0) (7.19)

implying that the sum of these currents is also bounded, and |H(ωτ )−
H(ω0)| ≤ 4(κ + B)N , see (3.1). Hence we conclude that |Δ| ≤ const
(with a constant that also depends on N but not on τ) which finishes
the proof.

In the case β = 0 (the bulk dynamics is that of the so called simple
symmetric exclusion process), more is known about the fluctuations of
the current, see e.g. [13].

8 More Nonequilibrium Issues

Only a limited review has been given in the previous sections of recent
work on nonequilibrium aspects of stochastic lattice gases. It basically
involved dynamical fluctuations of time-antisymmetric quantities only,
such as particle currents and entropy fluxes. We attempt to give some
additional remarks.

8.1 Escape from Equilibrium

Imagine yourself enclosed in a well-isolated room. At time zero some-
body opens doors and windows; how long would it take before you feel
that? Probably you will become aware of the openings because of some
air current, and its intensity will depend on the outdoor conditions.
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In the present section we use our model to ask a similar question. Sup-
pose a probability distribution μ on K which is nonzero, μ(η) > 0, only
when N (η) = m for some given number 0 < m < N of particles. For
the rest we assume that it is thermally distributed:12

μ(η) =
1
Zm

exp[−βH(η)] χ(N (η) = m) (8.1)

We consider the dynamics of Section 4.2 in the steady state P ρ and we
ask for the fraction of times that we see a fixed configuration η:

pτ (η) =
1
τ

∫ τ

0
χ(ηt = η) dt

That time-average is a random variable and it depends on η. An impor-
tant question in the theory of large deviations is to ask whether these
fractions resemble a given probability measure; here we ask what is the
function I(μ) so that

P ρ[pτ * μ] * e−τ I(μ), τ ↑ +∞ (8.2)

That question has been rigorously studied by Donsker and Varadhan,
[9, 14], and we know an expression for I(μ):

I(μ) = − inf
g>0

〈Lg
g

〉

μ
(8.3)

The expectation is over the distribution μ and Lg is as before the
generator of the process acting on a function g (over which we vary in
(8.3)). It is known that in the case of a detailed balance process, the
minimizer in (8.3) is g
 =

√
μ/ρ.

From (8.3) it is clear that we must find the function g on K that
minimizes

∑

η∈K

μ(η)
g(η)

{N−1∑

i=1

C(i, i+1, η) g(ηi,i+1)+g(η−N )C(−N, η)+g(ηN )C(N, η)
}

The sum is effectively over all η with μ(η) > 0 or N (η) = m. Since the
configurations η±N have one particle more or less than η, we can put
g(ξ) = 0 whenever N (ξ) �= m, and the minimization is over

∑

η∈K

μ(η)
g(η)

N−1∑

i=1

C(i, i+ 1, η) g(ηi,i+1)

12 χ is the indicator function.
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Taking again the complete Donsker-Varadhan functional we have

I(μ) = 〈C(−N, η(−N)) + C(N, η(N))〉μ − inf
g

〈Lg
g

〉

μ
(8.4)

where the new generator L only considers particle exchanges generating
a dynamics that satisfies the condition of detailed balance with respect
to our μ; in other words, it is typical to ‘see’ the distribution μ for that
pure hopping process. It follows that the second term in (8.4) is zero
to conclude that

I(μ) = 〈C(−N, η(−N)) + C(N, η(N))〉μ
As we could expect the fluctuation functional measures the dynamical
activity or intensity that lets the system escape from μ. There is in
fact a more general relation between occupation statistics as we have
it here and the time-symmetric notion of traffic or dynamical activ-
ity, as discussed in [45, 46]. Close to equilibrium that traffic becomes
approximately equivalent with the entropy production rate. This obser-
vation lies behind the emergence of certain nonequilibrium variational
principles, see [47].

The issue here is somewhat related to the problem of metastability,
as found also in the contributions by Anton Bovier and by Frank den
Hollander, see also [4]. At the same time, it is related to e.g. Section 5.7
in [9] (diffusion from a domain), and from a physics point of view it is
related to Kramers’ theory, [22].

8.2 Macroscopic Fluctuations

The previous calculation was to give a glimpse of the theory of
dynamical fluctuations. In a more general context it discusses the
statistical properties of empirical time-averaged quantities in both
time-symmetric and time-antisymmetric sectors, including their corre-
lations. There is however another scale of description on which similar
questions become better manageable, that is the level of macroscopic
fluctuations, static and dynamical. For our model, it refers to a hydro-
dynamical scaling in which one observes the evolution of the density
profile. After a diffusive space-time rescaling one finds that the density
profile nt(r) obeys a standard diffusion equation, [30],

∂nt(r)
∂t

=
1
2
∂

∂r
D(nt(r))

∂

∂r
nt(r) , r ∈ [−1, 1]

where D(nt(r)) is the diffusion ‘constant,’ further constrained by im-
posing the boundary conditions ρ(±1) = 1/(1 + ea±). In the simplest
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case (corresponding to β = 0) the diffusion is truly constant and the
stationary profile n
 is linear. One can however ask for fluctuations
around that (typical) behavior. The hydrodynamic equation is the re-
sult of a law of large numbers and we can ask for the plausibility of
a deviating density profile. We refer to [1, 13, 31, 41, 48] for further
results and insights.

Part II. Macroscopic Irreversibility

9 Introduction

Up to now we have been discussing so called mesoscopic systems, or
more precisely, classical mesoscopic systems modeled as stochastic pro-
cesses. Time-reversal symmetry was broken by applying external condi-
tions, frustrating the system in its return to equilibrium. However, the
microscopic laws of nature are time-reversal invariant. One could then
perhaps have expected to find that all resulting behavior is invariant un-
der time-reversal, except perhaps for some microscopic interactions.13

That is not what we see: systems return to equilibrium thereby showing
the infamous arrow of time. The equations of macroscopic physics are
not time-reversible (or not always). They have often been described
and been used quite some time before their microscopic origin was
clarified. In fact their (macroscopic) irreversibility once casted doubt
on the kinetic and atomistic picture of matter and motion. One of the
greatest successes in the pioneering days of statistical mechanics was
then indeed the explanation of that manifest irreversibility.

That the emergent macroscopic laws are irreversible is not so dif-
ficult to understand at least qualitatively. One should realize that
distinct macroscopic states can be very different in the number of mi-
crostates they consist of. It is the installation of an initial macrostate
that breaks the invariance under time-reversal: unless forbidden by
additional constraints, a less plausible initial state evolves to a more
plausible macrostate and finally to the most plausible, called equilib-
rium, exactly because that is more plausible. The plausibility is mea-
sured in terms of the ‘number’ of microstates or, more precisely, by
the Boltzmann or counting entropy which has a well defined thermo-
dynamic limit (a precise meaning of that counting needs to be and will
be specified). The generic increase of the entropy between initial and
13 All would probably agree e.g. that the weak fundamental interaction is not at all

responsible for macroscopic irreversibility, and most would probably agree that
quantum mechanics is not either (while this is somewhat more tricky).
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final macrostates (traditionally both in equilibrium) is known as the
second law of thermodynamics and can be formulated in various ways.
Still, even more is often true: considerations of entropy via counting
the microstates consistent with a given macrostate, are a priori not
restricted only to the initial and the final states and can be applied to
each intermediate, ‘nonequilibrium’ state as well. Extended in that way,
the Boltzmann entropy is often an increasing function of time, as was
first demonstrated for the Boltzmann equation, the macroscopic evo-
lution equation for rare gases, and rigorously proven in the so called
Boltzmann-Grad scaling limit and for short times by Lanford, [32].
Such a much more detailed or ‘microscopic’ version of the second law
proves to be valid much beyond the Boltzmann equation; for general
theoretical arguments see [26, 27, 28, 18, 20, 21, 52].

From a mathematical point of view, the second law in the form of
an H-theorem in fact claims the existence of a Lyapunov functional for
a class of evolution equations, and it even hints at how to find that:
if we know the underlying microscopic dynamics from which the evo-
lution equation (presumably or provably) follows, one is to search for
the Boltzmann entropy. Understanding why this strategy often works
brings to the foreground some other important observations: the valid-
ity of a macroscopic evolution equation means that there is a typical
macroscopic behavior in the sense that it is a result of some law of large
numbers. The fact that the macroscopic equation is often first order in
time means that this macroscopic behavior is autonomous. On the other
hand, the existence of microscopic configurations violating that typical
macroscopic law is not only allowed but in a sense it is even neces-
sary for a true irreversible behavior and a strict increase of entropy to
occur! When formulated somewhat more precisely, these observations
answer various apparent paradoxes as formulated by Loschmidt and
Zermelo; a qualitative discussion can be found on various places, see
e.g. [33, 6, 26].

Putting these arguments on a mathematically more precise level is
relatively simple but it remains very instructive. First, in Section 10,
we study a model introduced by Mark Kac, [29]. The arguments are
formulated in a substantially more generality in Section 11 (the case of
infinite dynamical systems) and Section 12 (the case of large but finite
systems). In particular, we explain how an H-theorem follows from the
very existence of an (even weakly) autonomous macroscopic dynamics.
The resolution of Zermelo’s and Loschmidt’s paradoxes is understood
via a fluctuation symmetry, in this way drawing a link to the first part
of these lectures. Most of the presented material and some more details
can be found in [11] and references therein.
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Since the fundamental laws of nature are presumably quantum, one
can further ask how the classical arguments leading to H-theorems
need to be changed when starting from a quantum microscopic dynam-
ics. There is no crucial difference up to one important point, namely
that the very notion of a macroscopic state needs to be reconsidered
because it can be (and in nonequilibrium practice it often is) spec-
ified through values of mutually incompatible observables. The non-
commutativity is a genuine quantum-mechanical feature which cannot
be simply waived away by arguments identifying the classical limit
with the thermodynamic limit. Furthermore, entropic arguments and
microscopic derivations all together play on the level of fluctuations,
i.e. before the thermodynamic limit. Starting from Section 13, we ex-
plain a possible approach to the quantum problem along the lines of
reference [12], thereby generalizing some ideas of John von Neumann,
[50]. An interesting side problem is to show how our construction of the
quantum Boltzmann entropy relates to other, mathematically simpler
but physically a priori less plausible constructions. In fact, we show
when two definitions of quantum entropies become equivalent in the
large system limit. That issue is obviously very related to the problem
of quantum large deviations and we will briefly describe the connec-
tions. Finally, as an example, we come back to the Kac ring model and
we discuss its quantum extension along the lines of reference [10]; see
Section 14.

10 Kac Ring Model

There is a simple paradigmatic model introduced by Mark Kac [29]
to simplify the mathematics of the Boltzmann equation. While the
Boltzmann equation is much more complicated, the Kac model is math-
ematically simple and free of those extra technical problems that are not
really important for understanding some crucial aspects of the emer-
gence of macroscopic irreversibility.

10.1 Microscopic Dynamics

Consider the set Λ = {1, . . . , N}. We imagine it as a ring in which we
identify the sites 1 ≡ N + 1 and on each site we have one particle and
one scatterer. The particles carry a ‘spin’ η(i) = ±1 and the scatterers
can be off or on, g(i) ∈ {0, 1}. The resulting set K = {−1, 1}Λ×{0, 1}Λ
is the state space of our model. The dynamics is deterministic and given
via the transformation U on K,
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(U(η, g))(i) = ([1− 2g(i− 1)] η(i− 1), g(i)) mod N (10.1)

which generates the (microscopic) deterministic dynamics such that the
configuration (ηt, gt) at time t = 0, 1, . . . is

ηt(i) = η0(i− t)[1− 2g(i− t)] . . . [1− 2g(i− 1)] (10.2)

and gt = g keeps constant. There is an obvious interpretation: at every
time instance t, each spin ηt(i) jumps to its successive site, i+1, either
flipping its value if a scatterer is present, g(i) = 1, or keeping its value
if g(i) = 0. Sampling the initial configuration (η0, g) from a measure
μ0 on K, the probability to find (η, g) at time t is

μt[(η, g)] = μ0[(ηt, g)] (10.3)

That is the present variant of the Liouville equation for mechanical sys-
tems. Here also the Shannon entropy S(μ)=−

∑
η,g μ[(η, g)] log μ[(η, g)]

is time-invariant, S(μt) = S(μ0). There is just no strictly increasing
Lyapunov function for this dynamical system; in fact, the dynamics
is 2N−periodic. Nevertheless the model exhibits relaxation to equilib-
rium; to see that, we need to pass to a macroscopic viewpoint.

10.2 Macroscopic Evolution

There are two natural macroscopic observables, the magnetization mN

and the fraction of on-scatterers ρN :

mN (η) =
1
N

N∑

i=1

η(i) , ρN (g) =
1
N

N∑

i=1

g(i) (10.4)

The emergent macroscopic dynamics will have the form

(mNt , ρ
N ) �→ (mNt+1, ρ

N ) = φ(mNt , ρ
N ) (10.5)

at least for very large N . It would imply that the macroscopic data
(mNt , ρ

N
t ) evolve autonomously, irrespectively of any actual microscopic

configuration (ηt, gt) that realize (10.4). A simple heuristics14 suggests
φ(m, ρ) = ([1− 2ρ]m, ρ) as a candidate map. Yet, it is easy to imagine
microscopic configurations that violate that and the question arises how
such a macroscopic behavior can/must be understood.
14 Think of N(1±m) up (down) spins crossing ‘on average’ Nρ scatterers every time

step, entirely neglecting possible time correlations. Such a hand-waving deriva-
tion is often referred to as Stosszahlansatz (or repeated randomization, molecular
chaos approximation,...).
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Introducing the counting probability measures

P
N [(η, g)] = 2−2N (10.6)

and the notation a δ= b for |a − b| ≤ δ, the desired statement has the
form of a law of large numbers:15

lim
N↑∞

P
N [mN (ηt)

δ= m0(1− 2ρ)t |mN (η0) = m0; ρN (g) = ρ] = 1 (10.7)

for all δ > 0. This means there is a set of typical microscopic configura-
tions satisfying the macroscopic law with map φ; those configurations
violating that law make a set of zero limit measure. Such a macroevo-
lution is called autonomous; note that (10.7) is equivalent to

lim
N↑∞

P
N [∀t ≤ T : mN (ηt)

δ= m0(1−2ρ)t |mN (η0) = m0; ρN (g) = ρ] = 1

(10.8)
for all δ > 0 and any finite T .

The relaxation to equilibrium along that typical macroevolution is
obvious by inspection but one can also construct an explicit witness
which is the Boltzmann entropy s(m, ρ) defined as the large deviation
rate function for the sequence (mN , ρN )N↑+∞ of observables:

P
N [(mN (η), ρN (g))] * (m, ρ)] * eNs(m,ρ) (10.9)

This is to be understood in the logarithmic sense after taking the limit
N ↑ +∞, i.e., it is a shorthand for the limit statement

s(m, ρ) = lim
δ↓0

lim
N↑+∞

1
N

log P
N [mN (η) δ= m; ρN (η) δ= ρ] (10.10)

This is simply the binomial entropy,

s(m, ρ) =

⎧
⎪⎨

⎪⎩

−1+m
2 log(1 +m)− 1−m

2 log(1−m)− ρ log 2ρ
−(1− ρ) log 2(1−ρ) if − 1< m< 1, 0< ρ< 1

−∞ otherwise
(10.11)

and one checks that s(φ(m, ρ)) > s(m, ρ) whenever m �= 0 (system off
equilibrium) and 0 < ρ < 1 (nonsingular macrodynamics). Using the
notationmt = m0(1−2ρ)t, it yields that s(mt, ρ) is a strictly increasing
15 In fact, a strong law of large numbers is also true for this model, see [29], but the

weak law is sufficient for our purposes. Later we will meet an even substantially
weaker autonomy condition.
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function of time. Following Boltzmann’s terminology, such a statement
is called an H-theorem; the Boltzmann entropy is a Lyapunov function.

It should be clear that we say nothing yet about possible macroevo-
lutions corresponding to those exceptional microstates not verifying the
macroscopic map φ. That will come in Section 10.3.

Proof of (10.7): Use the shorthand

Ẽ
N [ · ] = E

N [ · |mN (η0) = m0; ρN (g) = ρ]

for the expectations conditioned on the initial macrostate (m0, ρ). One
easily checks that (1) P

N are permutation-invariant measures, (2) η0
and g are independently distributed under P

N , and (3) the following
asymptotic decoupling is true:16 provided that −1 < m0 < 1 and 0 <
ρ < 1, there is a sequence Δ(k)

N , limN Δ
(k)
N = 0 for all k = 1, 2, . . ., such

that

|ẼN [η(i1) . . . η(ik)]− (ẼN [η(1)])k| ≤ Δ(k)
N (10.12)

and

|ẼN [g(i1) . . . g(ik)]− (ẼN [g(1)])k| ≤ Δ(k)
N (10.13)

for all 1 ≤ i1 < i2 < . . . < ik ≤ N .
Then, one subsequently gets

Ẽ
N [mN (ηt)] =

1
N

N∑

i=1

Ẽ
N [η0(i− t){1− 2g(i− t)} . . . {1− 2g(i− 1)}]

= Ẽ
N [η0(1)] ẼN [{1− 2g(1)} . . . {1− 2g(t)}]

= m0{(1− 2 Ẽ
N [g(1)])t +AN}

= m0(1− 2ρ)t + o(1)
(10.14)

by using that |AN | ≤ Δ
(t)
N due to (10.13). Similarly for the second

moment,

Ẽ
N [(mN (ηt))2] =

1
N

N∑

i=1

Ẽ
N [η0(1) η0(i)] ẼN [{1− 2g(1)} . . . {1− 2g(t)}

× {1− 2g(i)} . . . {1− 2g(i+ t− 1)}]
(10.15)

16 This property can be recognized as an instance of the equivalence between mi-
crocanonical and canonical ensembles.
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Observe that for t+ 1 ≤ i ≤ N + 1− t there is no pair of the g’s in the
above product, acting on the same site. Hence, using the permutation-
invariance and the asymptotic decoupling (10.12)–(10.13),

Ẽ
N [(mN (ηt))2] =

1
N

N+1−t∑

i=t+1

{m2
0 +BN (i)}{(1− 2 Ẽ

N [g(1)])2t + CN (i)}

+
1
N

( t∑

i=1

+
N∑

i=N+2−t

)
{m2

0 +BN (i)}

× Ẽ
N [{1− 2g(1)} . . . {1− 2g(t)}
× {1− 2g(i)} . . . {1− 2g(i+ t− 1)}]

=
N − 2t+ 1

N
m2

0(1− 2ρ)2t + o(1)

= m2
0(1− 2ρ)2t + o(1) (10.16)

since the remainders satisfy |BN (i)| ≤ Δ(2t)
N , |CN (i)| ≤ Δ(2t)

N for all i,
and using a simple bound on the last term. The weak law of large
numbers (10.7) then follows from (10.14) and (10.16) via a Chebyshev
inequality.

Remark that there is a considerable freedom in the choice of the
measures from which the initial configurations are sampled. The ‘mi-
crocanonical’ measure

P̃
N [ · ] = P

N [ · |mN (η) = m0; ρN (g) = ρ] (10.17)

is most natural but for obtaining (10.7), it can be replaced by various
other ensembles. There is for example the ‘canonical’ measure

P
N
can[(η, g)] =

1
ZN exp

N∑

i=1

(βη(i) + αg(i)) (10.18)

with the Lagrange multipliers β, α being fixed by the conditions

E
N
can[η(1)] = m0 , E

N
can[g(1)] = ρ

and ZN is the normalization factor. It is easy to check that the auton-
omy (10.7) remains true if replacing P̃

N with P
N
can; in fact, the proof is

simpler now since P
N
can exactly factorizes and hence the above remain-

ders AN , BN , CN as in (10.14) and (10.16) are zero. The corresponding
large deviation rate function scan(η, g) which enters the law
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P
N
can[(m

N (η), ρN (g)) * (m, ρ)] * eNscan(m,ρ) (10.19)

can also be computed (the easiest via the Gartner-Ellis theorem, [9])
with the result scan(m, ρ) = s(m, ρ). This equality shows the equiva-
lence of ensembles on the level of entropies, which is well studied in
equilibrium statistical physics. We come back to the problem of equiv-
alence within a quantum framework and in a substantially larger gen-
erality in Section 13.4.

10.3 Irreversibility and Entropy Production

Consider a modification of the microdynamics (10.1) in which the par-
ticles jump to the left instead of to the right. It is given by the map

(Ū(η, g))(i) = ([1− 2g(i)] η(i+ 1), g(i)) mod N (10.20)

which is an inverse of U , i.e., Ū ◦U = U ◦ Ū = 1. The spin configuration
at time t as evolved from η through the dynamics Ū is denoted by η̄t:

η̄t(i) = η0(i+ t)[1− 2g(i+ t− 1)] . . . [1− 2g(i)] (10.21)

Observe that the sequence (trajectory) (η0, η1, . . . , ηt) is allowed (pos-
sible) under the original microscopic dynamics iff (ηt, ηt−1, . . . , η0) is
possible under U . That invertibility is referred to as dynamical (time-)
reversibility. It can be formulated differently by extending the config-
uration space K with a ‘velocity’ variable v ∈ {−1, 1} and by defining
the dynamics via the transformation

V (η, g, v) =

{
(U(η, g), v) if v = +1
(Ū(η, g), v) if v = −1

(10.22)

With the involution π, π(η, g, v) = (η, g,−v) the dynamical reversibility
gets the form: π◦V ◦π = V −1; the time-reversed microscopic dynamics
is then achieved by inverting the velocity v.

The macroscopic time-evolution φ in whichm �→ (1−2ρ)m ∈ [−1, 1]
is invertible as well (provided that ρ �= 1

2). Yet, the typical macro-
scopic time-evolution corresponding to Ū is not φ−1 but rather φ again,
i.e., the law of large numbers (10.7) stays true when replacing U and
ηt with Ū and η̄t! It simply means that the macroscopic evolution
m �→ m(1− 2ρ) does not get inverted by starting from a typical micro-
scopic configuration η corresponding to the macroscopic statem(1−2ρ)
and by applying the inverted microscopic dynamics (or by inverting the
velocity). Naturally, there exist microscopic configurations η for which
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the inverted macroevolution m(1 − 2ρ) �→ m along the dynamics Ū
would be observed—this is precisely what the dynamical reversibility
claims—they show up to be exceedingly exceptional under macrostate
m(1 − 2ρ), however. This physical impossibility to invert the macro-
scopic evolution is referred to as macroscopic irreversibility.

The macroscopic irreversibility in the above sense on the one hand
and the strict increase of the Boltzmann entropy on the other hand,
are often used as synonyms. Let us formulate their relation a bit more
precisely. Observe that the two sets

{(η0, g) : mN (η0)
δ= m0; mN (ηt)

δ= mt; ρN (g) δ= ρ}

and
{(η0, g) : mN (η̄t)

δ= m0; mN (η0)
δ= mt; ρN (g) δ= ρ}

with mt = m0(1 − 2ρ)t have the same cardinalities (check that the
map Ū is a bijection between these sets). Hence, they have the same
measures under P

N , which we write as

log P
N [mN (ηt)

δ= mt |mN (η0)
δ= m0; ρN (g) δ= ρ]

+ log P
N [mN (η0)

δ= m0; ρN (g) δ= ρ]

= log P
N [mN (η̄t)

δ= m0 |mN (η0)
δ= mt; ρN (g) δ= ρ]

+ log P
N [mN (η0)

δ= mt; ρN (g) δ= ρ]

(10.23)

Dividing by N , taking the limits N ↑ ∞ and δ ↓ 0 in this order, and
using the law of large numbers (10.7), we get the large deviation law

lim
δ↓0

lim
N↑∞

1
N

log P
N [mN (η̄t)

δ= m0 |mN (η0)
δ= mt; ρN (g) δ= ρ]

= s(m0, ρ)− s(mt, ρ)
(10.24)

or

P
N [mN (η̄t) * m0 |mN (η0) * mt; ρN (g) * ρ] * e−N [s(mt,ρ)−s(m0,ρ)]

(10.25)
which is quite a remarkable relation. Notice first that it provides an-
other derivation of the H-theorem: since the left-hand side is less than
one, one immediately gets s(mt, ρ) ≥ s(m0, ρ). Further, the left-hand
side is nothing but the probability that a configuration η0 sampled from
macrostate mt and evolved according to Ū (or equivalently U for this
model), exhibits the macroscopic transition from mt to m0, which is
just an inversion of the typical transition m0 �→ mt.
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Macroscopic irreversibility amounts to the statement that such in-
verted macroscopic transitions are physically impossible; here we have
a quantitative evaluation how rare they really are: the large deviation
rate function for the backward transition mt �→ m0 with respect to Ū
just coincides with the entropy production along the typical macroevo-
lution m0 �→ mt with respect to microscopic dynamics U . Inverting
the logic, this can be read off as a formula for the entropy production,
possibly useful provided that the probability of those rare backward
transitions can be evaluated or estimated.

The seeming inconsistency between the microscopic reversibility and
the macroscopic irreversibility is known as the Loschmidt paradox.
Equality (10.25) in a sense solves this paradox and put it in a correct
perspective: those macroscopic trajectories obtained by time-reverting
the typical ones (φt(m); t = 0, 1, . . .) are indeed observable for finite N ,
however they are exponentially damped. Notice that (10.25) is nothing
but a macroscopic analogue of the detailed balance condition (4.4) that
we have already discussed in the context of lattice gases.

11 Infinite Systems

The above analysis of the Kac model shows up to be quite generic and
one can easily extend those arguments to a more general setup. The
aim of the present section is to formulate general sufficient conditions
for the existence of a Lyapunov function for a class of macroscopic
dynamics, or, equivalently, for an H-theorem to be valid.

11.1 Dynamical Systems, Macrostates, and Entropy

On a microscopic level, we consider a family of classical dynamical
systems (KN , UNt ,PN )N↑+∞, where the label N should be thought
of as a spatial extension of the system and the maps17 (UNt )t≥0 are
assumed to satisfy the semigroup condition UNt U

N
s = Ut+s for all

t, s ≥ 0. The probability measures P
N are invariant under the dy-

namics: P
N (UN )−1 = P

N .
The macroscopic level of description is specified by a collection of

macroscopic observables. These are some maps MN : KN �→ Ω into
a metric space (Ω, d) of macrostates. We assign to every m ∈ Ω the
17 Depending on an application, the maps UN

t can be e.g. Hamiltonian flows, possi-
bly with the time and space suitably rescaled with N . The details are not really
important for what follows, we will only require the microscopic dynamics to
satisfy a few general conditions, see below.
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Boltzmann entropy defined as the large deviation rate function under
the measures P

N :

s(m) = lim
δ↓0

lim sup
N↑+∞

1
N

log P
N [MN (x) δ= m] , m ∈ Ω (11.1)

using the shorthand m δ= m′ whenever d(m,m′) ≤ δ. Denote

Ω0 = {m ∈ Ω; s(m) > −∞} (11.2)

the set of those macrostates that are admissible; we assume Ω0 �= ∅.
Note this is a first nontrivial assumption: the parametrization by N
and an eventual rescaling have to be meaningful so that (MN ) indeed
satisfies the large deviation principle with a finite rate function s(m)
on some large enough space Ω0.

11.2 Autonomous Evolution and H-theorem

Starting from a microscopic configuration x ∈ KN , the macroscopic
trajectory is simply the collection (MN (UNt x))t≥0. We assume the ex-
istence of an autonomous macroscopic dynamics in the following sense:
let there be a collection (φt)t≥0 of maps φ : Ω0 �→ Ω0 satisfying

1. the semigroup condition

φt ◦ φs = φt+s , t, s ≥ 0 (11.3)

2. a weak autonomy condition

lim
δ↓0

lim
N↑+∞

1
N

log P
N [MN (UNt x)

δ= φt(m) |MN (x) δ= m] = 0 (11.4)

for all t ≥ 0 and m ∈ Ω0.

Notice that (11.4) is a much weaker condition than the law of large
numbers (10.7) valid for the Kac model. In particular, no typical macro-
scopic evolution is required to exist; that (φt)t≥0 can e.g. be a single
realization of a stochastic process describing a macroscopic evolution of
a system passing through a number of branching points.18 On the other
hand, this condition is generally not satisfied by stochastic systems on
mesoscopic scale and/or without involving the large N limit. In that
18 To have in mind a specific scenario, think of a ferromagnet being cooled down

from a high-temperature paramagnetic state. When passing the critical tempera-
ture, the system randomly (= depending on the initial microscopic configuration)
chooses one of the ferromagnetic states with broken symmetry.



282 C. Maes et al.

sense, condition (11.4) draws a sharp border line between macroscopic
and mesoscopic systems.

Since P
N is invariant under UNt , conditions (11.3)–(11.4) are equiv-

alent with a single condition

lim
δ↓0

lim
N↑+∞

1
N

log P
N [MN (UNt x)

δ= φt(m) |MN (Usx)
δ= φs(m)] = 0

(11.5)

required for all t ≥ s ≥ 0. Using the invariance P
N again, we find that

for any pair m,m′ ∈ Ω0 of macrostates,

log P
N (MN (x) δ= m′) = log P

N (MN (UNt x)
δ= m′)

≥ log P
N (MN (UNt x)

δ= m′ |MN (UNs x)
δ= m)

+ log P
N (MN (UNs x)

δ= m)
(11.6)

which we are again going to divide by N , to take the upper limit N ↑
+∞ and then to take the limit δ ↓ 0. Choosing first m = φs(m) and
m′ = φt(m), autonomy condition (11.5) yields

s(φt(m)) ≥ s(φs(m)) , t ≥ s ≥ 0 (11.7)

which is an H-theorem. Second, for m = φt(m) and m′ = φs(m) it
yields the inequality

− lim
δ↓0

lim sup
N↑+∞

1
N

log P
N (MN (UNt x)

δ= φs(m) |MN (UNs x)
δ= φt(m))

≥ s(φt(m))− s(φs(m)) (11.8)

again for all t ≥ s ≥ 0, which provides an upper bound on the
Boltzmann entropy production.

For an invertible microdynamics (UNt ) inequalities (11.7)–(11.8) can
be turned into a single equality by essentially repeating the computa-
tion of Section 10.3, see (10.23)–(10.24). The result reads

s(φt(m))− s(φs(m)) = J̄s,t(φt(m), φs(m)) ≥ 0 (11.9)

where

− J̄s,t(m,m′)

= lim
δ↓0

lim sup
N↑+∞

1
N

log P
N [MN (ŪNt x)

δ= m′ |MN (ŪNs x)
δ= m] (11.10)
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is the rate function for the transition from macrostate m at time s
to macrostate m′ at time t along the time-reversed dynamics ŪNt ≡
(UNt )−1. The conclusions of Section 10.3 apply as well in this gen-
eral case: J̄s,t(φt(m), φs(m)) is a natural ‘measure’ of macroscopic irre-
versibility, and we have proven it is just equal to the entropy production
for the transition φs(m) �→ φt(m) fulfilling the autonomy (11.5).

Semigroup condition (11.3) is crucial and cannot be simply relaxed.
Indeed, assuming only the autonomy in the form (11.4), one would still
have the inequality between the initial and final Boltzmann entropies:
s(φt(m)) ≥ s(m), t ≥ 0, however, s(mt) might not be monotone in
general. As an example, think of the macrodynamics φt : R �→ R given
as φt(m) = mrt cosωt, |r| < 1, which is like the position of an under-
damped pendulum swinging around its equilibrium position.

The missing semigroup property can be recovered by including addi-
tional macroscopic observables; in the case of the pendulum one would
naturally add its velocity as another observable. To conclude, the semi-
group condition is basically a restriction on the choice of the collection
of macroscopic observables, which needs to be in that sense ‘complete.’

12 Finite Systems

In this section we evaluate the necessity of the large N limit in the
above arguments, and we attempt a microscopic formulation of the H-
theorem for an entropy defined upon a finite system and as a functional
on microscopic configurations.

12.1 Zermelo-Poincaré Paradox

For any fixed N the dynamical system (K,Ut,P) ≡ (KN , UNt ,PN ) is
really a finite size system; this is encoded by the assumption that P

is a probability (and hence normalizable) measure. For simplicity, we
consider in this section a macroscopic observableM : K �→ Ω such that

Ω0 = {m ∈ Ω; P[M−1(m)] > 0} (12.1)

is finite or countable. As entropy function we take

S(m) = log P[M−1(m)] , m ∈ Ω0 (12.2)

The well-known Poincaré recurrence theorem then reads that for
P−almost every microstate x ∈ K and any time t0 one has M(Utx) =
M(x) for some t > t0, i.e., the trajectory almost surely returns back to
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the initial macrostateM(x). This is usually phrased as the impossibility
for the entropy (12.10) to be an increasing (nonconstant) function of
time, which is also known as the Zermelo(-Poincaré) paradox. However,
the analysis in the previous section and the Kac example give a clue:
the recurrence time increases with the system size N and is shifted
away to infinity in the thermodynamic limit.19

In the context of H-theorems it is instructive to reformulate
Zermelo’s objection in still a slightly modified way. There is in fact
a tempting ‘trivialization’ of the argument leading to the H-theorem
which goes as follows:

For our finite system, the autonomy could simply mean that the
macroscopic evolution as specified by a map φ : Ω0 �→ Ω0 is just what
takes place for almost every microstate, i.e., that for P−a.e. x ∈ K
one has

M(Utx) = φt(M(x)) , t ≥ 0 (12.3)

Were this indeed true as such, it would automatically imply the semi-
group condition since, almost surely,

M(Ut+sx) = φt(M(Usx)) = φt ◦ φs(M(x)) , t, s ≥ 0 (12.4)

Second, it would mean that

P[(Ut)−1M−1(mt) ∩M−1(m)] = P[M−1(m)] (12.5)

with mt = φt(m), i.e., the set of microstates M−1(m) evolves to a
subset of M−1(mt), up to a zero measure set. Hence,

S(mt) = log P[(Ut)−1M−1(mt)] ≥ P[M−1(m)] = S(m) (12.6)

due to the invariance of P. Finally,

S(mt) = S(φt−s(ms)) ≥ S(ms) , t ≥ s ≥ 0 (12.7)

On the other hand, by the above Poincaré recurrence, S(mt) = S(m)
for infinitely many t, and hence S(mt) is constant!

The above computation shows that the assumption of autonomy in
the form (12.3) or (12.5) is too strong. If fulfilled, the macroscopic evo-
lution would necessarily be reversible and the entropy constant. Our
condition of autonomy (11.4) is much weaker and it does not guar-
antee the semigroup property. In the Kac example, the law of large
numbers (10.7) is far stronger than autonomy (11.4), yet still consistent
with a macroscopic irreversible evolution, as we have checked explicitly.
19 For the Kac example the recurrence time is of order N . However, in many dynam-

ical systems it goes exponentially with the number of degrees of freedom, which
is itself eO(N).
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12.2 Microscopic H-theorem

We come back to the general framework of Section 11.1 and consider
again a sequence of dynamical systems (KN , UNt ,P

N )N and a general
macroscopic observable MN : KN → Ω, macroscopic in the sense that
Ω0 defined in (11.1) is nonempty. Our aim is now to formulate an H-
theorem for Boltzmann entropy assigned to each microstate of a single,
possibly large finite-size system. Put it differently, we want to see how
much the entropy is allowed to fluctuate around a monotone path when
evaluated along a single microscopic trajectory of a single dynamical
system with N large but fixed.

For N fixed the Boltzmann entropy is no longer unambiguously de-
fined since the sets {x; MN (x) δ= m} depend on the width δ > 0 and are
not necessarily all disjoint for different macroscopic statesm. To be safe
we assign to every microstate x ∈ KN the interval [SN,δ< (x), SN,δ> (x)] of
entropies defined as

SN,δ< (x) = inf
m∈Ω0

{SN,δ(m); m δ=MN (x)} (12.8)

SN,δ> (x) = sup
m∈Ω0

{SN,δ(m); m δ=MN (x)} (12.9)

where

SN,δ(m) = log P
N [MN (x) δ= m] (12.10)

We impose the autonomy assumption in the form of a law of large
numbers:

lim
δ↓0

lim
N↑+∞

P
N [MN (UNt x)

δ= φt(m) |MN (x) δ= m] = 1 (12.11)

for all m ∈ Ω0, t ≥ 0, and with maps φt : Ω0 �→ Ω0 such that φt ◦ φs =
φt+s, t ≥ s ≥ 0.

Let us fix some initial condition m ∈ Ω0, δ > 0 and a finite sequence
of times 0 = t0 < t1 < . . . < tQ. Combining assumption (12.11) with
the semigroup condition, the remainder

DN,δ(s, t;m) := 1− P
N [MN (UNt x)

δ= φt(m) |MN (UNs x)
δ= φs(m)]

(12.12)

satisfies limδ↓0 limN↑+∞DN,δ(s, t;m) = 0 whenever t ≥ s ≥ 0. By
subadditivity,
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P
N [MN (UNtj x)

δ= φtj (m), j = 1, . . . , Q |MN (x) δ= m]

≥ 1−
Q∑

j=1

DN,δ(0, tj ;m) (12.13)

Whenever mN (Utx)
δ= φt(m) then

SN,δ< (UNt x) ≤ SN,δ(φt(m)) ≤ SN,δ> (UNt x) (12.14)

As a consequence, (12.13) gives

P
N [SN,δ< (Utjx)≤SN,δ(φtj (m))≤SN,δ> (Utjx), j=1, . . . , Q |MN (x) δ= m]

≥ 1−
Q∑

j=1

DN,δ(0, tj ;m) (12.15)

Entropies at successive times satisfy the inequality following from
(12.12):

SN,δ(φtj (m)) ≥ SN,δ(φtj−1(m)) + log(1−DN,δ(tj−1, tj ;m)) (12.16)

Using that

lim
δ↓0

lim
N↑+∞

Q

min
j=1

log(1−DN,δ(tj−1, tj ;m)) = 0 (12.17)

inequalities (12.15)–(12.16) yield the main result of this section:
For any Δ > 0, m ∈ Ω0, and a finite sequence 0 = t0 < t1 < . . . tQ

of times, one has

lim
δ↓0

lim
N↑+∞

P
N [SN,δ> (Utjx)≥S

N,δ
< (Utj−1x)−Δ, j=1, . . . , Q|MN (x) δ=m]=1

(12.18)

Therefore, the finite-system entropy violates the monotonicity as little
as required with probability arbitrarily closed to one, provided that δ is
small enough and N large enough. This is the announced microscopic
H-theorem.

Remark that the ambiguity with the definition of finite-system en-
tropy does not arise if the observables MN take only finitely or count-
ably many values (as in Section 12.1 but this time uniformly for all N).
In that case, one can set δ = 0 and the entropy is simply

SN (x) := SN,0< (x) = SN,0> (x) = log P
N [(MN )−1MN (x)] (12.19)
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(Compare with (12.2).) The microscopic H-theorem (12.18) then be-
comes, under the same assumptions,

lim
N↑+∞

P
N [SN (Utjx) ≥ SN (Utj−1x)−Δ, j = 1, . . . , Q |MN (x) = m] = 1

(12.20)

13 Quantum Systems

The arguments presented in the previous section do not dramatically
change when passing from a classical to a quantum dynamics. What
does need to be refined however, is the very description of macroscopic
states due to the inherent incompatibility of quantum observables, as
visible from the noncommutativity of corresponding (self-adjoint) op-
erators before any macroscopic limit is taken.

Obviously, the question of a quantum fluctuation theory and of
quantum limiting behavior is not restricted to nonequilibrium physics.
The difference between equilibrium and nonequilibrium macroscopic
states lies mainly in the choice of macroscopic constraints. The con-
straints describing equilibrium (like energy, particle number) usually
commute and hence the problem we discuss here typically falls in a
nonequilibrium context.

A first attack on this problem dates back to John von Neumann, [50].
His idea went as follows: The single particle position and momentum
operators Q, P satisfy the commutation relation20 [Q,P ] = i. Hence,
assigning copies Qi, Pi, i = 1, . . . , N to each of N particles, the averages
QN = 1

N

∑
iQi, P

N = 1
N

∑
i Pi satisfy [QN , PN ] = i

N . Although they
do not commute and hence cannot be diagonalized together (nor simul-
taneously measured), one can think of suitable modifications Q̃N , P̃N

that already commute and that in a sense well approximate the orig-
inals, at least for large N . Indeed, von Neumann explicitly constructs
commuting operators Q̃N , P̃N which have purely discrete spectra of
nondegenerate eigenvalues (qNα , p

N
α )α, and whose eigenvectors (ψNα )α

make a complete orthonormal basis system in L2(RN ). They approxi-
mate the operators QN , PN in the sense that

(ψNα , Q
NψNα ) = qNα , (ψNα , P

NψNα ) = pNα (13.1)

and

‖(QN − qNα )ψNα ‖ ≤
C√
N
, ‖(PN − pNα )ψNα ‖ ≤

C√
N

(13.2)

with C ≈ 60, see [50] for details.
20 Set the Planck constant to one.
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What follows is a slight modification and generalization of the above
idea that comes close to the point of view of quantum information
theory. Instead of modifying the operators themselves, we look for the
largest or typical subspaces that in some sense well approximate the
eigenspaces for given eigenvalues, simultaneously for all macroscopic
observables from a collection. This construction proves to be natural
since the corresponding entropy, measuring the dimension of that typ-
ical subspace, actually satisfies a variational principle. Hence, it can
be directly compared with another, more familiar although physically
less satisfactory construction based on maximizing the von Neumann
entropy. The (non)equality of both entropies is then a problem of
(non)equivalence of ensembles. Looked at from another angle, such an
equivalence gives a counting interpretation to the von Neumann entropy
in the thermodynamic limit, and opens interesting possibilities towards
a consistent and meaningful scheme of quantum large deviations.

13.1 Quantum Macrostates and Entropy

A macroscopically large quantum system is modeled by a sequence of
finite-dimensional Hilbert spaces (HN )N↑+∞ on which we have stan-
dard traces TrN . As macroscopic observables we consider a collection
MN = (MN

k )k∈I of self-adjoint operators on HN ; for simplicity, we
assume I to be finite. For each operator there is a projection-valued
measure QNk on R such that, by the spectral theorem,

F (MN
k ) =

∫

R

QNk (dz)F (z) , F ∈ C(R) (13.3)

(which is just to say thatMN
k is unitarily equivalent to a multiplication,

or simply that MN
k can be diagonalized.) A quantum counterpart of

the classical set of microstates MN
k

δ= mk for some macrostate mk ∈ R

is the projection

QN,δk (mk) =
∫ mk+δ

mk−δ
QNk (dz) (13.4)

Commuting Observables

As a warm-up, assume first that MN is a collection of mutually com-
muting operators. In that case, QN (dz) =

∏
k∈I QNk (dzk) is a common

projection-valued measure, (13.3) extends to

F (MN ) =
∫

RI

QN (dz)F (z) , F ∈ C(RI) (13.5)
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and a macrostate m = (mk)k∈I gets represented by the projection

QN,δ(m) =
∏

k∈I
QN,δk (mk) (13.6)

The classical entropy, say in the form (12.10), extends to

SN,δ(m) = log TrN [QN,δ(m)] (13.7)

This is a formalism entirely equivalent to the one for classical systems.

General Observables

For a general collection MN of observables and a macrostate m ∈
R
I , projections (PN )N↑+∞ are said to be concentrating at m, written
PN → m, whenever

lim
N↑+∞

trN [F (MN
k ) | PN ] = F (mk) (13.8)

is satisfied for all F ∈ C(R) and k ∈ I, with the notation

trN [ · | PN ] =
TrN [PN · ]
TrN [PN ]

(13.9)

for the normalized trace on PN HN . Condition (13.8) is a law of large
numbers for observables MN

k under quantum state (13.9); it can be
equivalently written as the condition

lim
N↑+∞

trN [QN,δk (mk) | PN ] = 1 (13.10)

for any δ > 0 and k ∈ I. Physically, it means that all MN
k , k ∈ I are

asymptotically dispersionless under state (13.9).
Having in mind the classical situation where the entropy counts the

number of all microstates x such thatMN (x) δ= m, we are mostly inter-
ested in those concentrating sequences that are maximal in the sense of
dimension counting. Hence, we define the (infinite-system, Boltzmann)
entropy s(m) for any m = (mk)k∈I by the limit

s(m) = lim sup
PN→m

1
N

log TrN [PN ] (13.11)

i.e., s(m) is the largest limit point over all projections concentrating
at m. Any projections PN attaining the entropy s(m) in the large N
limit,



290 C. Maes et al.

lim sup
N↑+∞

1
N

log TrN [PN ] = s(m) (13.12)

are then called typical projections concentrating at m.21 Clearly, they
provide a variant of the microcanonical ensemble for noncommuting
observables. An example comes in Section 14.

To check that the above definition of entropy is meaningful, we
first revisit the relation between the macroscopic autonomy and the
H-theorem of Section 11.2 in the present quantum set-up. Second, we
link our construction to the canonical construction based on maximiz-
ing the von Neumann entropy, and we prove that they are equivalent
under suitable conditions.

13.2 H-theorem

As a microscopic dynamics we consider a family of automorphisms22

(τNt )t≥0 acting on the observables from B(HN ) and having the semi-
group property

τNt τ
N
s = τNt+s , t, s ≥ 0 (13.13)

Denote
Ω0 = {m ∈ R

I ; s(m) ≥ 0} (13.14)

the set of all admissible macrostates. The conditions on the emergent
macroscopic dynamics now have the following form, cf. Section 11.2.
There are maps (φt)t≥0 on Ω0 satisfying

1. semigroup condition: φt ◦ φs = φt+s, t, s ≥ 0;
2. autonomy condition: for every m ∈ Ω0 there exist some typical

projections PN → m concentrating atm such that for all F ∈ C(R),
k ∈ I, and t ≥ 0,

lim
N↑+∞

trN [τNt F (MN
k ) | PN ] = F ((φtm)k) (13.15)

or, equivalently,

lim
δ↓0

lim
N↑+∞

trN [τNt Q
N,δ
k ((φtm)k) | PN ] = 1 (13.16)

21 Note a slight difference in the terminology with respect to [12] where the typical
concentrating projections were rather called a microcanonical macrostate. The
present terminology is closer to the one of quantum information theory.

22 This means that τN
t (X Y ) = τN

t (X) τN (Y ) for any X, Y ∈ B(HN ), which is
a noncommutative generalization of classical deterministic map. Physically,
(HN , τN

t , TrN ) models a closed quantum dynamical system; note that
TrN (τN

t (·)) = TrN (·) and hence TrN corresponds to the invariant (counting,
unnormalized) classical measure.
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Under these condition it is easy to prove that

s(φtm) ≥ s(φsm) , m ∈ Ω0, t ≥ s ≥ 0 (13.17)

Indeed, let PN → m be typical projections concentrating at m and
verifying (13.15) or (13.16). Using that τNt is invertible and (τNt )−1 is
again an automorphism such that TrN ((τNt )−1·) = TrN (·), one has

trN [τNt F (MN
k ) | PN ] =

trN [F (MN
k ) (τNt )−1PN ]

trN [(τNt )−1PN ]

= trN [F (MN
k ) | (τNt )−1PN ]

(13.18)

Hence, autonomy (13.15) implies that (τNt )−1PN concentrate at φtm,
(τNt )−1PN → φtm.23 As a result,

s(m) = lim sup
N↑+∞

1
N

log TrN [(τNt )−1PN ] ≤ s(φtm) (13.19)

By combining with the semigroup property,

s(φtm) = s(φt−s ◦ φsm) ≥ s(φsm) (13.20)

as claimed.
Notice that in (13.15)–(13.16) we have required the autonomy con-

dition in the sense of a law of large numbers; compare with a much
weaker assumption (11.4). A possible way how to prove the H-theorem
under a weaker autonomy condition here too, might be via suitably
weakening the notion of concentration and by modifying the definition
of entropy; we do not discuss this issue.

13.3 Canonical Formalism

Von Neumann has introduced the entropy functional on states ωN (·) =
TrN [ρN · ] over B(HN ) by

S(ωN ) = −TrN [ρN log ρN ] (13.21)

For trace states on subspaces of HN , given as

ωNPN (·) = TrN [PN · ]/TrN [PN ], (13.22)

the von Neumann entropy boils down to

S(ωNPN ) = log TrN [PN ] (13.23)
23 Note they do not have to be typical concentrating projections at φtm!
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In this light, entropy (13.11) can also be written as

s(m) = lim sup
PN→m

S(ωNPN )
N

(13.24)

A general and very successful approach in statistical physics lies in
the idea that a variational principle like (13.24) can often be extended
to a larger ‘test space’, so that (1) a new variational problem becomes
easier to solve, and (2) the resulting entropy s(m) can be proven to re-
main unchanged. This is a standard approach at least when describing
thermal equilibrium, but it is often used in a similar way to describe
nonequilibrium macroscopic states (sometimes then referred to as con-
strained equilibria).

To obtain the canonical description for a given macrostate m ∈ R
I ,

we write ωN 1→ m for any sequence of states satisfying

lim
N↑+∞

ωN (MN
k ) = mk, k ∈ I (convergence in mean). (13.25)

Analogous to (13.24), we define the canonical entropy,

scan(m) = lim sup
ωN 1→m

S(ωN )
N

(13.26)

Any sequence of states (ωN )N↑+∞ such that limN↑+∞ S(ωN )/N =
scan(m) we then call canonical states at m.

An advantage of this formulation is that one can often find canonical
states explicitly in a Gibbsian form: consider states ωNλ (·) = TrN [ρNλ · ]
defined as

ρNλ =
1
ZNλ

eN
∑

k λkM
N
k , ZNλ = TrN [eN

∑
k λkM

N
k ] (13.27)

with some λ = (λk)k∈I . If limN↑+∞ ωNλ (MN
k ) = mk, k ∈ I, then

(ωNλ )N↑+∞ are canonical states at m.
This easily follows from the positivity of relative entropy, see e.g. [5]:

for any ωN 1→ m, ωN (·) = TrN [ρN · ],

lim sup
N↑+∞

− 1
N
ωN [log ρN ] ≤ lim sup

N↑+∞
− 1
N
ωN [log ρNλ ]

= lim sup
N↑+∞

1
N

logZNλ −
∑

k

λkmk

= lim sup
N↑+∞

− 1
N
ωNλ [log ρNλ ]

(13.28)
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as claimed. It also yields the canonical entropy in the form

scan(m) = p(λ)−
∑

k

λkmk (13.29)

where we have defined the ‘pressure’

p(λ) = lim sup
N↑+∞

1
N

logZNλ (13.30)

13.4 Macroscopic Equivalence

By construction, scan(m) ≥ s(m). A natural question arises under what
conditions both entropies are actually equal. This is a familiar problem
of the equivalence of ensembles (microcanonical versus canonical in this
case) on the level of entropies, however, the usual arguments, e.g. [37,
55, 19], are mostly restricted to the case of equilibrium and commuting
observables (with the energy and/or the particle number as the only
variables). The generalized microcanonical ensemble in the sense of
Section 13.1 requires some refinement of those arguments. Below we
provide some sufficient conditions for the equivalence.

Let (ωNλ )N↑+∞ be canonical states (13.27) with ωNλ
1→ m. Assume

that

1. the limit
p(λ) = lim

N↑+∞

1
N

log TrN [eN
∑

k λkM
N
k ] (13.31)

exists and has the derivative dp(κλ)
dκ

∣∣
κ=1

=
∑
k λkmk;

2. for any j ∈ I, the generating function

qj(κ) = lim
N↑+∞

1
N

log TrN [eN
∑

k λkM
N
k eκNM

N
j ] (13.32)

exists and has the derivative dqj(κ)
dκ

∣∣
κ=0

= mj .

Under these hypotheses we will prove that

s(m) = scan(m) =
∑

k∈I
λkmk − p(λ) (13.33)

Remark that by the Golden-Thompson inequality,24

qj(κ) ≥ p(λ+ (0, . . . , (κ)j , . . . , 0)) (13.34)
24 eA+B ≤ eAeB for all hermitian matrices A, B.
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Unless Mk
N all mutually commute, this inequality generically becomes

strict and those (qj)j∈I are fundamentally different from the pressure;
they appear naturally when studying quantum large fluctuations, see
Section 13.5.

The proof of equivalence (13.33) comes in a sequence of steps: first
we show that the canonical states ωNλ are exponentially concentrating
at m, then we construct typical projections for these states, and finally
we prove that those typical projections concentrate at m too.

Exponential Concentration

By assumption, qj exists in some interval [−κ0, κ0], κ0 > 0. From the
spectral theorem (13.3),

qj(κ) = p(λ) + lim
N↑+∞

1
N

logωNλ [eκNM
N
j ]

= p(λ) + lim
N↑+∞

1
N

log
∫

R

ωNλ [QNj (dz)] eκzN

≡ p(λ) + lim
N↑+∞

1
N

log
∫

R

νNj (dz) eκzN

(13.35)

where we have introduced the (classical) probability measures νNj as
the distribution ofMN

j under states ωNλ . Denote the last term as ψj(κ),
and fix some δ > 0. One has the estimate

∫

R

νNj (dz) eκzN ≥ eκ(mj+δ)NνNj [z ≥ mj + δ] (13.36)

which implies, by the existence of the limiting generating function,

lim sup
N↑+∞

1
N

log νNj [z ≥ mj + δ] ≤ ψj(κ)− κ(mj + δ) (13.37)

for all 0 ≤ κ ≤ κ0. Since dψj

dκ |κ=0 = mj , there exists κ1 = κ1(δ),
0 < κ1 ≤ κ0 such that ψj(κ1) ≤ κ1mj + κ1δ

2 . Hence,

lim sup
N↑+∞

1
N

log νNj [z ≥ mj + δ] ≤ −κ1δ

2
(13.38)

Combining with an analogous argument for νNj [z ≤ mj − δ], we arrive
at the bound

ωNλ [QN,δj (mj)] ≥ 1− e−Cj(δ)N (13.39)
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valid for all δ > 0 and N ≥ Nj(δ), with some Cj(δ) > 0 and Nj(δ); the
QN,δj (mj) is given by (13.4).

This in particular implies that states ωNλ are concentrating at m(λ)
in the sense of a law of large numbers analogous to (13.10); moreover,
the concentration is exponentially fast. Note that the above argument
is similar to the construction of large deviation upper bounds, cf. any
textbook on the large deviation theory, e.g. [9, 23].

In an analogous way we exploit assumption (1) on the pressure.
This time we consider the observable

∑
k λkM

N
k and denote by Q̄N the

corresponding projection-valued measure, i.e., such that

F
(∑

k

λkM
N
k

)
=

∫

R

Q̄N (dz)F (z) , F ∈ C(R) (13.40)

Repeating the arguments (13.35)–(13.39), we get the result

ωNλ [Q̄N,δ] ≥ 1− e−C̄(δ)N (13.41)

with

Q̄N,δ =
∫

R

Q̄N (dz)χ
(∑

k

λkmk − δ ≤ z ≤
∑

k

λkmk + δ
)

(13.42)

valid again for all δ > 0, N ≥ N̄(δ), with some C̄(δ) > 0 and N̄(δ).

Typical Projections

From (13.41) there is a sequence δN ↓ 0 such that the projections
PN = Q̄N,δN satisfy

lim
N↑+∞

ωNλ [PN ] = 1 (13.43)

By construction one has the operator inequalities

PN
(∑

k

λkmk − δN
)
≤ PN

∑

k

λkM
N
k ≤ PN

(∑

k

λkmk + δN
)

(13.44)

which yield the upper bound

TrN [PN ] = ωNλ [(ρNλ )−1PN ] ≤ ZNλ e−N
(∑

k λkmk−δN
)
ωNλ [PN ] (13.45)

and the lower bound

TrN [PN ] ≥ ZNλ e−N
(∑

k λkmk+δN

)
ωNλ [PN ] (13.46)



296 C. Maes et al.

Using (13.43) and (13.29), this proves25

lim
N↑+∞

1
N

log TrN [PN ] = p(λ)−
∑

k

λkmk = scan(m) (13.47)

As soon as we prove that projections PN are concentrating at m (see
the next section), the last equation simply means that s(m) ≥ scan(m).
Since the opposite inequality is obvious, we arrive at (13.33) as claimed.

The arguments used in this section are well known in both classical
and quantum information theory, and projections PN satisfying (13.43)
and (13.47) are usually called typical (sequence of) projections. Their
existence under mild assumptions for a large class of models is a subject
of the Shannon-McMillan(-Breiman) theorem, see e.g. [3] and references
therein. For a nice overview of the principles of quantum information
theory see [8].

Concentration of Typical Projections

To finish the proof we need to show that PN as constructed in the last
section concentrate at m. The following is true for any Y N ≥ 0:

ωNλ [Y N ] = TrN [(ρNλ )
1
2Y N (ρNλ )

1
2 ]

≥ TrN [PN (ρNλ )
1
2Y N (ρNλ )

1
2PN ]

= TrN [(Y N )
1
2PNρNλ (Y N )

1
2 ]

≥ 1
ZNλ

eN
(∑

k λkmk−δN
)

TrN [PN ] trN [Y N | PN ]

≥ e−2NδNωN [PN ] trN [Y N | PN ]

(13.48)

where we have used inequalities (13.44) and (13.46). Take now Y N =
1 − QN,εj (mj) and use the exponential concentration property of ωNλ ,
inequality (13.39); one obtains

1− trN [QN,εj (mj) | PN ] ≤ e−(Cj(ε)−2δN )N (ωNλ [PN ])−1 (13.49)

for any ε > 0 and N ≥ Nj(ε), which immediately gives26

25 Note that one only needs that limN↑+∞
1
N

log TrN [PN ] = 0. In particular, the
assumption on the differentiability of the pressure is convenient but far from
necessary; see also a comment below.

26 Note it actually yields an exponential concentration, even under that weaker
assumption limN↑+∞

1
N

log TrN [PN ] = 0.
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lim
N↑+∞

trN [QN,εj (mj) | PN ] = 1 (13.50)

Repeating for all j ∈ I, this proves PN → m.

13.5 Towards Quantum Large Deviations

Using the notation of Section 13.4, the Gärtner-Ellis theorem of (clas-
sical) large deviations, [9, 23], teaches us that whenever the generating
function qj ∈ C1(R) is differentiable and strictly convex, one has the
law

lim
δ↓0

lim
N↑∞

1
N

log νNj [z δ= m̃j ] = −Ij(m̃j) (13.51)

for any m̃j such that m̃j = dqj
dκ

∣∣
κ=κ(m̃j)

for some (unique by assumption)
κ(m̃j), and with the rate function Ij being the Legendre transform

Ij(m̃j) = sup
κ

{
κ m̃j − lim

N↑+∞

1
N

logωNλ
[
eκNM

N
j
]}

= sup
κ

[κ m̃j − qj(κ) + p(λ)]

= κ(m̃j) m̃j − qj(κ(m̃j)) + p(λ)

(13.52)

(Naturally, for m such that ωNλ
1→ m one has κ(mj) = 0 and Ij(mj)

= 0.) In terms of the canonical states ωNλ , (13.51) becomes simply

lim
δ↓0

lim
N↑+∞

1
N

logωNλ [QN,δj (m̃j)] = −Ij(m̃j) (13.53)

This is an exponential law for the outcomes of measurements of the
observables MN

j , upon the canonical states ωNλ . This gives an interpre-
tation to qj as the corresponding generating function.

The existence and differentiability of qj gets nontrivial whenever the
observablesMN

k are more complicated than just something like the spa-
tial averages of one-site observables over a lattice (a simple example are
the observablesMN

1 ,M
N
2 ,M

N
3 in the quantum Kac model, Section 14).

In the usual context of quantum lattice models, no general argument
is known even for the existence of qj(κ), which is in contrast to the
case of pressure p(λ) where the situation is rather well understood,
[55, 24, 5]. For some partial results about the existence of qj in the
so called high-temperature regime see [49, 53]; the differentiability is
studied in [49].

By means of the Varadhan lemma, [9], formula (13.53) can be equiv-
alently written as
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lim
N↑+∞

1
N

logωNλ [eNF (MN
j )] = sup

z
{F (z)− Ij(z)} (13.54)

for any F ∈ C(R), for simplicity assumed to be bounded from above.
This form provokes still another related question, namely the asymp-
totic limit

lim
N↑+∞

1
N

log TrN [eN
(∑

k λkM
N
k +F (MN

j )
)
] (13.55)

Although this is likely not directly related to the quantum fluctuations,
such formulas appear naturally when studying lattice models with a
combination of short-range and long-range interactions. Some authors
consider this formulation as a genuine problem of quantum large devi-
ations; see e.g. [51] where the authors show the above limit to exist in
the case of MN

k being averages over one-site spin observables.27 They
prove the following variational principle:

(13.55) = sup
z
{F (z)− I ′j(z)} , I ′j(z) = sup

κ
{κ z − q′j(κ)} (13.56)

q′j(κ) = lim
N↑+∞

1
N

log TrN
[
eN

(∑
k λkM

N
k +κMN

j

)]
(13.57)

which is similar to (13.51)–(13.52) up to the modified generating
function q′.

A general and systematic quantum large deviation theory is lacking,
however, and remains an interesting open question. Possibly even more
ambitious, both physically and mathematically, would be the problem
of correlated large fluctuations for noncommuting macroscopic observ-
ables. Some ideas on this issue can be found in [2]; also the present con-
struction of generalized microcanonical ensembles, Section 13.1, seems
related to this problem.

14 Example: Quantum Kac Ring

This is a quantum extension of the Kac ring model of Section 10, intro-
duced and studied in [15, 11]. Consider a ring Λ = {1, . . . , N} again,
and associate with each site i a quantum spin η(i) ∈ C

2 and a classical
variable g(i) ∈ {1, 0} that indicates the presence respectively the ab-
sence of a scatterer. The state space of the model is hence HN ×KN
with Hilbert spaceHN = C

2N (spins) and classical spaceKN = {0, 1}N
(scatterers).

27 This in particular means that the canonical states ωN
λ are product states.
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14.1 Macroscopic Description

As macroscopic observables we consider the operators

MN
α =

1
N

N∑

i=1

σα(i) , α = 1, 2, 3 (14.1)

where σα(i) are copies at site i of the Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(14.2)

representing three components of the local ‘magnetization’, and

MN
0 (g) =

1
N

N∑

i=1

g(i) (14.3)

the density of scatterers. By construction, [MN
1 ,M

N
2 ] = 1

NM
N
3 (and

cyclic permutations). The classical (= commutative) case is restored
by keeping e.g. MN

0 and MN
3 as the only macroobservables.

It is sometimes convenient to embed KN in C
2N and to utilize a

compact notation for both operators on HN and classical functions on
KN . In this sense we speak below about states over HN ×KN , and we
use the shorthand T̂rN =

∑
g∈KN TrN .

In the canonical framework,

ωNλ (·) =
1
ZNλ

T̂rN [eN
∑3

α=0 λαMN
α · ]

= e−Np(λ)T̂rN
[
e
∑N

i=1

(
λ0g(i)+

∑3
α=1 λασα(i)

)
·
]

(14.4)

are product canonical states, and the pressure is

p(λ) =
1
N

log T̂rN [eN
∑3

α=0 λαMN
α ] = log 2[(1 + eλ0) cosh |λ|] (14.5)

with the shorthands λ = (λ1, λ2, λ3) and |λ| = (λ2
1+λ2

2+λ2
3)

1
2 . Further,

ωNλ
1→ m where

m0 =
∂p

∂λ0
= (1 + e−λ0)−1 , mα =

∂p

∂λα
=
λα
|λ| tanh |λ| , α = 1, 2, 3

(14.6)
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The canonical entropy is then, m = (m0,m),

scan(m) = p(λ)−
3∑

α=0

λαmα

=

⎧
⎪⎨

⎪⎩

−1+|m|
2 log 1+|m|

2 − 1−|m|
2 log 1−|m|

2 −m0 logm0

−(1−m0) log(1−m0) if |m| < 1, 0 < m0 < 1
−∞ otherwise,

(14.7)

cf. the classical case, (10.11).
To obtain a microcanonical description in the sense of Section 13.1,

we associate with any macroscopic state m = (m0,m) the modified
macroscopic observable (MN

0 , M̄
N ),

M̄N =
3∑

α=1

mα
|m|M

N
α =

1
N

N∑

i=1

σ̄(i) , σ̄ =
m
|m| · σ (14.8)

and the modified macrostate (m0, |m|).
Since σ̄ is unitarily equivalent to e.g. σ3, i.e., σ̄ = Wσ3W

† with
some W † = W−1, we are back at the classical (commutative) situation.
Denoting by Q̄N (dz) the projection-valued measure for (MN

0 , M̄
N ),

one easily checks that any28 Q̄N,δN (m0, |m|) such that δN ↓ 0, are
concentrating projections at (m0, |m|). Moreover, if N

1
2 δN ↑ +∞ then

these are typical concentrating projections at (m0, |m|) and the entropy
is, as essentially can be read off from the classical formula (10.11),

s(m0, |m|) = lim
N↑+∞

1
N

log T̂rN [Q̄N,δN (m0, |m|)] = scan(m0,m) (14.9)

In the last step, we need to show that Q̄N,δN (m0, |m|) are also con-
centrating at m = (m0,m), that is the macrostate under the original
(noncommuting family of) macroscopic observables MN . This can be
proven by essentially repeating the argument of Section 13.4; we leave
it to reader as an exercise. As a result, those Q̄N,δN (m0, |m|) are typical
projections concentrating at m = (m0,m).

14.2 Microscopic Dynamics

To model the scattering of quantum spins (represented by vector η) on
the binary variable g, consider a unitary matrix V on C

2,

V = eih·σ , h = (h1, h2, h3) (14.10)

28 The notation is the same as in Section 13.1.
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Let the dynamics on HN ×KN be given as, cf. (10.1),

UN (η; g) =
(
g(N)V η(N) + (1− g(N)) η(N),

g(1)V η(1) + (1− g(1)) η(1), . . . ,

. . . , g(N − 1)V η(N − 1) + (1− g(N − 1)) η(N − 1); g
)

(14.11)

extended to a unitary operator in the quantum sector by linearity. The
associated automorphisms are then

τNt (·) = (UN )−t · (UN )t (14.12)

14.3 Macroscopic Dynamics

Let us start with a heuristic argument in the spirit of Boltzmann’s
Stosszahlansatz. Any macrostate m = (m0,m) can be associated with
the quantum state of a single ‘effective’ quantum spin, via the 2 × 2
density matrix

ν =
1
2
(1l + m · σ) , Tr[ν σα] = mα , α = 1, 2, 3 (14.13)

Each time step the effective spin either meets a scatterer (with prob-
ability m0) or not (with probability 1 − m0). Hence, its evolution is
presumably ν �→ νt = φ̄t(ν),

φ̄(ν) = m0V νV
† + (1−m0) ν (14.14)

by construction enjoying the semigroup property. Using (14.10) and
(14.13), this can be explicitly written as the evolution on macrostates:
mt+1 = φ(mt) where

φ(m0,m) = (m0, m−2m0[(n×m) sin |h| cos |h|−n×(n×m) sin2 |h|])
(14.15)

with the notation n = h/|h|. One easily checks that h ·m is invariant
under φ; the evolution can be visualized as a spiral motion in the plane
perpendicular to n. Provided that |h| �= 0, π, 2π, . . . and m0 ∈ (0, 1),

lim
t↑+∞

φt(m0,m) = (m0, (n ·m)n) (14.16)

and the relaxation is exponentially fast. The monotonicity of the en-
tropy s(mt) can also be easily verified.
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A rigorous argument showing that the above heuristics is indeed
correct was given in [10], employing a strategy similar to that for the
classical Kac model, Section 10.2. The result reads that for a large class
of (sequences of) states ωN 1→ m, including in particular

• the (microcanonical) states trN [ · | Q̄N,δN (m, |m|)] under those typ-
ical concentrating projections at m constructed in Section 14.1;

• the canonical states ωNλ from (14.4);

one has the law of large numbers:

ωN [τNt F (MN
α )] = F ((φtm)α) , α = 1, 2, 3 (14.17)

for all F ∈ C(R) and with φ given by (14.15). Hence, one verifies the
autonomy condition (13.15).

14.4 Exercise

Consider (MN
0 ,M

N
3 ) as a new macroscopic observable. Check that the

data (m0,m3) are macroscopically equivalent with (m0, 0, 0,m3) for the
original ‘full’ macroscopic observable MN ; therefore the autonomy just
follows from (14.17). Calculate the entropy s(m0,m3) and show that
it oscillates as a function of time. How can this apparent failure of the
H-theorem be explained?

15 Concluding Remarks

The text has discussed some newer and some older issues of nonequi-
librium physics. Main emphasis has been on fluctuations and on the
relation between entropy and irreversibility. One could say that ev-
erything has been an exploration of the idea that entropy production
is a measure of irreversibility. Some central identities have been (4.7),
(7.5), (10.25) and (11.9) which all point to the deep connection between
source terms of time-reversal breaking and statistical thermodynamic
quantities. They go beyond standard irreversible thermodynamics be-
cause fluctuations play an essential role here. As known since long, the
deviations of thermodynamic behavior are important in the very un-
derstanding of its microscopic origin. These relations go also beyond
the standard schemes as they are not perturbative and they do not
require linear approximations or closeness to equilibrium.

Nevertheless there is also a sense in which all that has been at-
tempted here does remain very close to the standard perspective. We
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do not mean only that there is not really much fundamentally new
since Boltzmann’s statistical interpretation of entropy. It is true that
progress has been very slow and we have been writing mostly from the
point of view of the rear-guard, dissecting arguments and explanations
that have been won long before. What we do have in mind however is
that the theory so far remains very much restricted to direct compar-
isons with equilibrium. The obsession with time has mostly been an
interest in the passing away of structure, of deleting memory and of
ending in equilibrium—all the time centering around the second law of
thermodynamics, and often applying Markovian schemes or justifying
molecular chaos. We hope that the lectures that are summarized in the
preceding sections have indeed clarified some of these issues, but we do
not want to leave the reader without trying to provoke some feeling of
totally different directions.

The most sensational instances of nonequilibrium physics are prob-
ably not to be found in the problem of relaxation to equilibrium nor in
the installation of nonequilibrium via standard thermodynamic forces
for which the linear response theory appears to be working well even
quite far from equilibrium. What needs to be understood is the con-
structive role of fluctuations far away from equilibrium. For example,
understanding nonequilibrium aspects in life processes be it for molec-
ular motors or for the problem of protein folding, requires fundamental
studies in reaction-rate theory. Ratchet mechanisms and the physics of
transport and dissipation on very small scales must be part of it also.
Nonequilibrium issues that are related to macroscopic structure (even
on cosmic scales), to pattern formation and to the organization of ro-
bust steady behavior are mind-boggling, but one has to open them also
via the methods and the traditions of mathematical statistical physics
when one wants its role to go further than “simplification and reduction
of the results of previous investigations to a form in which the mind
can grasp them.”29
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Kac ring model, J. Phys. A: Math. Gen. 36, 1–13 (2003).

11. W. De Roeck, C. Maes, and K. Netočný, H-theorems from macroscopic
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Summary. Facilitated or kinetically constrained spin models (KCSM) are
a class of interacting particle systems reversible w.r.t. to a simple product
measure. Each dynamical variable (spin) is re-sampled from its equilibrium
distribution only if the surrounding configuration fulfills a simple local con-
straint which does not involve the chosen variable itself. Such simple models
are quite popular in the glass community since they display some of the pecu-
liar features of glassy dynamics, in particular they can undergo a dynamical
arrest reminiscent of the liquid/glass transition. Due to the fact that the jumps
rates of the Markov process can be zero, the whole analysis of the long time
behavior becomes quite delicate and, until recently, KCSM have escaped a
rigorous analysis with the notable exception of the East model. In these notes
we will mainly review several recent mathematical results which, besides being
applicable to a wide class of KCSM, have contributed to settle some debated
questions arising in numerical simulations made by physicists. We will also
provide some interesting new extensions. In particular we will show how to
deal with interacting models reversible w.r.t. to a high temperature Gibbs
measure and we will provide a detailed analysis of the so called one spin
facilitated model on a general connected graph.
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1 Introduction and Motivations

Consider the following simple interacting particle system. At each site
of the lattice Z there is a dynamical variable σx, called in the sequel
“spin”, taking values in {0, 1}. With rate one each spin attempts to
change its current value by tossing a coin which lands head with prob-
ability p ∈ (0, 1) and setting the new value to 1 if head and 0 if tail.
However the whole operation is performed only if the current value on
its right neighbor is 0. Such a model is known under the name of the
East model [18] and it is easily checked to be reversible w.r.t. the prod-
uct Bernoulli(p) measure. A characteristic feature of the East model is
that, when q := 1 − p ≈ 0, the relaxation to the reversible measure is
extremely slow [12]:

Trelax ≈ (1/q)
1
2

log2(1/q)
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where Trelax is the inverse spectral gap in the spectrum of the (self-
adjoint) generator L of the process. Notice that if one writes p = eβ

1+eβ

then Trelax ≈ ecβ
2

as β →∞, a behavior that is referred to as a super-
Arrhenius law in the physics literature.

The East model is one of the simplest examples of a general class
of interacting particles models which are known in physical literature
as facilitated or kinetically constrained spin models (KCSM).

The common feature to all KCSM is that each dynamical variable,
one for each vertex of a connected graph G and with values in a finite set
S, waits an exponential time of mean one and then, if the surrounding
current configuration satisfies a simple local constraint, is refreshed by
sampling a new value from S according to some apriori specified mea-
sure ν. These models have been introduced in the physical literature
[19, 20] to model the liquid/glass transition and more generally the slow
“glassy” dynamics which occurs in different systems (see [32, 10] for re-
cent review). In particular, they were devised to mimic the fact that the
motion of a molecule in a dense liquid can be inhibited by the presence
of too many surrounding molecules. That explains why, in all physical
models, S = {0, 1} (empty or occupied site) and the constraints specify
the maximal number of particles (occupied sites) on certain sites around
a given one in order to allow creation/destruction on the latter. As a
consequence, the dynamics becomes increasingly slow as the density
of particles, p, is increased. Moreover there usually exist blocked con-
figurations, namely configurations with all creation/destruction rates
identically equal to zero. This implies the existence of several invariant
measures (see [26] for a somewhat detailed discussion of this issue in
the context of the North-East model), the occurrence of unusually long
mixing times compared to standard high-temperature stochastic Ising
models and may induce the presence of ergodicity breaking transitions
without any counterpart at the level of the reversible measure [17].

Because of the presence of the constraints a mathematical analy-
sis of these models have been missing for a long time, with the no-
table exception of the East model [4], until a first recent breakthrough
[12, 13].

In this work we partly review the results and the techniques of
[12] but we also extend them in two directions. Firstly we show that
the main technique can be adapted to deal with a weak interaction
among the variables obtained by replacing the reversible product mea-
sure with a general high-temperature Gibbs measure. Secondly, moti-
vated by some unpublished considerations of D. Aldous [3], we analyze
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a special model, the so called FA-1f model, on a general connected
graph and relate its relaxation time to that of the East model.

2 The Models

2.1 Setting and Notation

The models considered here are defined on a locally finite, bounded
degree, connected graph G = (V,E) with vertex set V and edge set E.
The associated graph distance will be denoted by d(·, ·) and the degree
of a vertex x by Δx. The set of neighbors of x, i.e. y ∈ V such that
d(y, x) = 1, will be denoted by Nx. For every subset V ′ ⊂ V we denote
by ∂V ′ the set of vertices in V \ V ′ with one neighbor in V ′. In most
cases the graph G will either be the d-dimensional lattice Z

d or a finite
portion of it and in both cases we need some additional notation that
we fix now. For any vertex x ∈ Z

d we define the ∗, the oriented and
the ∗-oriented neighborhood of x as

N ∗
x = {y ∈ Z

d : y = x+
∑d
i=1 αiei, αi = ±1, 0 and

∑
i α

2
i �= 0}

Kx = {y ∈ Nx : y = x+
∑d
i=1 αiei, αi ≥ 0}

K∗
x = {y ∈ N ∗

x : y = x+
∑d
i=1 αiei, αi = 1, 0}

where ei are the basis vactors of Z
d. Accordingly, the oriented and

*-oriented neighborhoods ∂+Λ, ∂
∗
+Λ of a finite subset Λ ⊂ Z

d are
defined as ∂+Λ := {∪x∈ΛKx} \ Λ, ∂∗+Λ := {∪x∈ΛK∗

x} \ Λ. A rectangle
R will be a set of sites of the form

R := [a1, b1]× · · · × [ad, bd]

while the collection of finite subsets of Z
d will be denoted by F.

2.2 The Probability Space

Let (S, ν) be a finite probability space with ν(s) > 0 for any s ∈ S.
G ⊂ S will denote a distinguished event in S, often referred to as the
set of “good states”, and q ≡ ν(G) its probability.

Given (S, ν) we will consider the configuration space Ω ≡ ΩV = SV

whose elements will be denoted by Greek letters (ω, η . . . ). If G′ =
(V ′, E′) is a subgraph of G and ω ∈ ΩV we will write ωV ′ for its restric-
tion to V ′. We will also say that a vertex x is good for the configuration
ω if ωx ∈ G.
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On Ω equipped with the natural σ-algebra we will consider the
product measure μ :=

∏
x∈V νx, νx ≡ ν. If G′ = (V ′, E′) is a subgraph

of G we will write μV ′ or μG′ for the restriction of μ to ΩV ′ . Finally, for
any f ∈ L1(μ), we will use the shorthand notation μ(f) to denote its
expected value and Var(f) for its variance (when it exists).

2.3 The Markov Process

The general interacting particle models that will be studied here are
Glauber type Markov processes in Ω, reversible w.r.t. the measure μ
and characterized by a finite collection of influence classes {Cx}x∈V ,
where Cx is just a collection of subsets of V (often of the neighbors of
the vertex x) satisfying the following general hypothesis:

Hp1 For all x ∈ V and all A ∈ Cx the vertex x does not belong to A.
Hp2 r := supx supA∈Cx

d(x,A) < +∞.

In turn the influence classes together with the good event G are the
key ingredients to define the constraints of each model.

Definition 2.1. Given a vertex x ∈ V and a configuration ω, we will
say that the constraint at x is satisfied by ω if the indicator

cx(ω)=

{
1 if there exists a set A ∈ Cx such that ωy ∈ G for all y ∈ A
0 otherwise

(2.1)
is equal to one.

Remark 2.2. The two general hypotheses above tell us that in order to
check whether the constraint is satisfied at a given vertex we do not
need to check the current state of the vertex itself and we only need
to check locally around the vertex. This last requirement can actually
be weakened and indeed, in order to analyze certain spin exchange
kinetically constrained models [11], a very efficient tool is to consider
long range constraints!

The process that will be studied in the sequel can then be informally
described as follows. Each vertex x waits an independent mean one
exponential time and then, provided that the current configuration ω
satisfies the constraint at x, the value ωx is refreshed with a new value
in S sampled from ν and the whole procedure starts again.



312 N. Cancrini et al.

The generator L of the process can be constructed in a standard
way (see e.g. [27, 26]) and it is a non-positive self-adjoint operator on
L2(Ω,μ) with domain Dom(L) and Dirichlet form given by

D(f) =
∑

x∈V
μ (cxVarx(f)) , f ∈ Dom(L)

Here Varx(f) ≡
∫
dν(ωx)f2(ω) −

(∫
dν(ωx)f(ω)

)2 denotes the local
variance with respect to the variable ωx computed while the other vari-
ables are held fixed. To the generator L we can associate the Markov
semigroup Pt := etL with reversible invariant measure μ.

Notice that the constraints cx(ω) are increasing functions w.r.t the
partial order in Ω for which ω ≤ ω′ iff ω′x ∈ G whenever ωx ∈ G.
However that does not imply in general that the process generated by
L is attractive in the sense of Liggett [27].

Due to the fact that in general the jump rates are not bounded away
from zero, irreducibility of the process is not guaranteed and the re-
versible measure μ is usually not the only invariant measure (typically
there exist initial configurations that are blocked forever). An interest-
ing question when G is infinite is therefore whether μ is ergodic/mixing
for the Markov process and whether there exist other ergodic station-
ary measures. To this purpose it is useful to recall the following well
known result (see e.g. Theorem 4.13 in [27]).

Theorem 2.3 The following are equivalent,

(a) limt→∞ Ptf = μ(f) in L2(μ) for all f ∈ L2(μ).
(b) 0 is a simple eigenvalue for L.

Clearly (a) implies that limt→∞ μ (fPtg) = μ(f)μ(g) for any f, g ∈
L2(μ), i.e. μ is mixing.

Remark 2.4. Even if μ is mixing there will exist in general infinitely
many stationary measures, i.e. probability measures μ̃ satisfying
μ̃Pt = μ̃ for all t ≥ 0. As an example, assume cx not identically
equal to one and take an arbitrary probability measure μ̃ such that
μ̃
(
{S \ G}V

)
= 1. An interesting problem is therefore to classify all

the stationary ergodic measures μ̃ of {Pt}t≥0, where ergodicity means
that Ptf = f (μ̃ a.e.) for all t ≥ 0 implies that f is constant (μ̃ a.e.).
As we will see later, when G = Z

2 and for a specific choice of the
constraint known as the North-East model, a rather detailed answer is
now available [26].
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When G is finite connected subgraph of an infinite graph G∞ =
(V∞, E∞), the ergodicity issue of the resulting continuous time Markov
chain can be attacked in two ways.

The first one is to analyze the chain restricted to a suitably defined
ergodic component. Although such an approach is feasible and natural
in some cases (see section 6 for an example), the whole analysis becomes
quite cumbersome.

Another possibility, which has several technical advantages over the
first one, is to unblock certain special vertices of G by relaxing their
constraints and restore irreducibility of the chain. A natural way to do
that is to imagine to extend the configuration ω, apriori defined only
in V , to the vertices in V∞ \V and to keep it there frozen and equal to
some reference configuration τ that will be referred to as the boundary
condition. If enough vertices in V∞ \ V are good for τ , then enough
vertices of G will become unblocked and the whole chain ergodic.

More precisely we can define the finite volume constraints with
boundary condition τ as

cτx,V (ω) := cx(ω · τ) (2.2)

where cx are the constraints for G∞ defined in (2.1) and ω · τ ∈ Ω
denotes the configuration equal to ω inside V and equal to τ in V∞ \V .
Notice that, for any x ∈ V , the rate cτx,V (ω) (2.2) depends on τ only
through the indicators {1Iτz∈G}z∈B, where B is the boundary set B :=
(V∞ \ V ) ∩ (∪z∈V Cz). Therefore, instead of fixing τ , it is enough to
choose a subset M⊂ B, called the good boundary set, and define

cMx,V (ω) := cτx,V (ω) (2.3)

where τ is any configuration satisfying τz ∈ G for all z ∈ M and
τz /∈ G for z ∈ B \M. We will say that a choice of M is minimal if
the corresponding chain in G with the rates (2.3) is irreducible and it
is non-irreducible for any other choice M′ ⊂ M. The choice M = B
will be called maximal. For convenience we will write Lmax

Λ (Lmin
Λ ) for

the corresponding generators.

Remark 2.5. Without any other specification for the influence classes
of the model it may very well be the case that there exists no boundary
conditions for which the chain is irreducible and/or their existence may
depend on the choice of the finite subgraph G. However, as we will see
later, for all the interesting models discussed in the literature all these
issues will have a rather simple solution.

We will now describe some of the basic models and solve the problem
of boundary conditions for each one of them.
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2.4 0-1 Kinetically Constrained Spin Models

In most models considered in the physical literature the finite probabil-
ity space (S, ν) is a simple {0, 1} Bernoulli space and the good set G is
conventionally chosen as the empty (vacant) state {0}. Any model with
these features will be called in the sequel a “0-1 KCSM” (kinetically
constrained spin model). Although in most cases the underlying graph
G is a regular lattice like Z

d, whenever is possible we will try to work
in full generality.

Given a 0-1 KCSM, the parameter q = ν(0) can be varied in [0, 1]
while keeping fixed the basic structure of the model (i.e. the notion of
the good set and the constraints cx) and it is natural to define a critical
value qc as

qc = inf{q ∈ [0, 1] : 0 is a simple eigenvalue of L}

As we will prove below qc coincides with the bootstrap percolation
threshold qbp of the model defined as follows [34]1. For any η ∈ Ω
define the bootstrap map T : Ω �→ Ω as

(Tη)x = 0 if either ηx = 0 or cx(η) = 1. (2.4)

Denote by μ(n) the probability measure on Ω obtained by iterating n-
times the above mapping starting from μ. As n → ∞ μ(n) converges
to a limiting measure μ(∞) [34] and it is natural to define the critical
value qbp as

qbp = inf{q ∈ [0, 1] : μ∞ = δ0}
where δ0 is the probability measure assigning unit mass to the constant
configuration identically equal to zero. In other words qbp is the infimum
of the values q such that, with probability one, the graph G can be
entirely emptied. Using the fact that the cx’s are increasing function of
η it is easy to check that μ(∞) = δ0 for any q > qbp .

Proposition 2.6 ([12]) qc = qbp and for any q > qc 0 is a simple
eigenvalue for L.

Remark 2.7. In [12] the proposition has been proved in the special case
G = Z

d but actually the same arguments apply to any bounded degree
connected graph.

Having defined the bootstrap percolation it is natural to divide the 0-1
KCSM into two distinct classes.
1 In most of the bootstrap percolation literature the role of the 0’s and the 1’s is

inverted
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Definition 2.8. We will say that a 0-1 KCSM is non cooperative if
there exists a finite set B ⊂ V such that any configuration η which is
empty in all the sites of B reaches the empty configuration (all 0’s)
under iteration of the bootstrap mapping. Otherwise the model will be
called cooperative.

Remark 2.9. Notice that for a non-cooperative model the critical value
qc is obviously zero since with μ-probability one a configuration will
contain the required finite set B of zeros.

We will now illustrate some of the most studied models.

[1] Frederickson-Andersen (FA-jf) facilitated models [19, 20].
In the facilitated models the constraint at x requires that at least j ≤
Δx neighbors are vacant. More formally

Cx = {A ⊂ Nx : |A| ≥ j}

When j = 1 the model is non-cooperative for any connected graph G
and ergodicity of the Markov chain is clearly guaranteed by the presence
of at least one unblocked vertex. When j > 1 ergodicity on a general
graph is more delicate and we restrict ourselves to finite rectangles R
in Z

d. In that case and for the most constrained cooperative case j = d
among the irreducible ones, irreducibility is guaranteed if we assume a
boundary configuration identically empty on ∂+R. Quite remarkably,
using results from bootstrap percolation [34] combined with proposition
2.6, when G = Z

d and 2 ≤ j ≤ d the ergodicity threshold qc always
vanishes.

[2] Spiral model [9, 8]. This model is defined on Z
2 with the following

choice for the influence classes

Cx = {NEx ∪ SEx; SEx ∪ SWx; SWx ∪NWx; NWx ∪NEx}

where NEx = (x + e2, x + e1 + e2), SEx = (x + e1, x + e1 − e2),
SWx = (x − e2, x − e2 − e1) and NWx = (x − e1;x − e1 + e2). In
other words the vertex x can flip iff either its North-East (NEx) or its
South-West (SWx) neighbours (or both of them) are empty and either
its North-West (NWx) or its South-East (SEx) neighbours (or both
of them) are empty too. The model is clearly cooperative and in [8] it
has been proven that its critical point qc coincides with 1 − poc , where
poc is the critical threshold for oriented percolation. The interest of this
model lies on the fact that its bootstrap percolation is expected to
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display a peculiar mixed discontinuous/critical character which makes
it relevant as a model for the liquid glass and more general jamming
transitions [9, 8].

[3] Oriented models. Oriented models are similar to the facilitated
models but the neighbors of a given vertex x that must be vacant
in order for x to become free to flip, are chosen according to some
orientation of the graph. Instead of trying to describe a very general
setting we present three important examples.

Example 2.10. The first and best known example is the so called East
model [18]. Here G = Z and for every x ∈ Z the influence class Cx
consists of the vertex x + 1. In other words any vertex can flip iff its
right neighbor is empty. The minimal boundary conditions in a finite
interval which ensure irreducibility of the chain are of course empty
right boundary, i.e. the rightmost vertex is always unconstrained. The
model is clearly cooperative but qc = 0 since in order to empty Z it
is enough to start from a configuration for which any site x has some
empty vertex to its right. One could easily generalize the model to the
case when G is a rooted tree (see section 6). In that case any vertex
different from the root can be updated iff its ancestor is empty. The
root itself is unconstrained.

Example 2.11. The second example is the North-East model in Z
2 [25].

Here one chooses Cx as the North and East neighbor of x. The model is
clearly cooperative and its critical point qc coincides with 1−poc , where
poc is the critical threshold for oriented percolation in Z

2 [34]. For such
a model much more can be said about the stationary ergodic measures
of the Markov semigroup Pt.

Theorem 2.12 ([26]) If q < qc the trivial measure δ1 that assigns
unit mass to the configuration identically equal to 1 is the only trans-
lation invariant, ergodic, stationary measure for the system. If q ≥ qc
the reversible measure μ is the unique, non trivial, ergodic, translation
invariant, stationary measure.

Example 2.13. The third model was suggested in [4] and it is defined
on a rooted (finite or infinite) binary tree T . Here a vertex x can flip iff
its two children are vacant. If the tree is finite then ergodicity requires
that all the leaves of T are unconstrained. It is easy to check that the
critical threshold satisfies qc = 1/2, the site percolation threshold on
the binary tree.



Facilitated Spin Models 317

3 Quantities of Interest and Related Problems

Back to the general model we now define two main quantities that are
of mathematical and physical interest.

The first one is the spectral gap of the generator L, defined as

gap(L) := inf
f �=const

D(f)
Var(f)

(3.1)

A positive spectral gap implies that the reversible measure μ is mixing
for the semigroup Pt with exponentially decaying correlations:

Var (Ptf) ≤ e−2t gap(L) Var(f), ∀ f ∈ L2(μ).

Remark 3.1. In the sequel the time scale Trel := gap−1 which is natu-
rally fixed by the spectral gap will be referred to as the relaxation time
of the process.
For a 0-1 KCSM, two natural questions arise.

1. Define the new critical point q′c := inf{q ∈ [0, 1] : gap(L) > 0}.
Obviously q′c ≥ qc. Is it the case that equality holds?

2. If q′c = qc what is the behaviour of gap(L) as q ↓ qc?
As we will see later for most of the relevant models it is possible to
answer in rather detailed way to both questions.

The second quantity of interest is the so called persistence function
(see e.g. [23, 36]) defined by

F (t) :=
∫
dμ(η) P(ση0(s) = η0, ∀s ≤ t) (3.2)

where {σηs}s≥0 denotes the process started from the configuration η.
In some sense the persistence function, a more accessible quantity to
numerical simulation than the spectral gap, provides a measure of the
“mobility” of the system. Here the main questions are:

1. What is the behavior of F (t) for large time scales?
2. For a 0-1 KCSM is it the case that F (t) decays exponentially fast

as t→∞ for any q > q′c?
3. If the answer to the previous question is positive, is the decay rate

related to the spectral gap in a simple way or the decay rate of F (t)
requires a deeper knowledge of the spectral density of L?

4. Is it possible to exhibit examples of 0-1 KCSM in which the per-
sistence function shows a crossover between a stretched and a pure
exponential decay?

Unfortunately the above questions are still mostly unanswered except
for the first two.
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3.1 Some Useful Observations to Bound the Spectral Gap

It is important to observe the following kind of monotonicity that can
be exploited in order to bound the spectral gap of one model with the
spectral gap of another one.

Definition 3.2. Suppose that we are given two influence classes C0 and
C′0, denote by cx(ω) and c′x(ω) the corresponding rates and by L and L′
the associated generators on L2(μ). If, for all ω ∈ Ω and all x ∈ V ,
c′x(ω) ≤ cx(ω), we say that L is dominated by L′.

Remark 3.3. The term domination here has the same meaning it has in
the context of bootstrap percolation. It means that the KCSM associ-
ated to L′ is more constrained than the one associated to L.

Clearly, if L is dominated by L′, D′(f) ≤ D(f) and therefore gap(L′) ≤
gap(L).

Example 3.4. Assume that the graph G has n vertices and contains a
Hamilton path Γ = {x1, x2, . . . , xn}, i.e. d(xi+1, xi) = 1 for all 1 ≤ i ≤
n−1 and xi �= xj for all i �= j. Consider the FA-1f model on G with one
special vertex, e.g. xn, unconstrained (cxn ≡ 1). Then, if we replace G
by Γ equipped with its natural graph structure and we denote by L
and L′ the respective generators, we get that gap(L) ≥ gap(L′). Clearly
L′ describes the FA-1f model on the finite interval [1, . . . , n] ⊂ Z with
the last vertex free to flip. This in turn is dominated by LEast, the
generator of the East model on [1, . . . , n], which is known to have a
positive [4, 12] spectral gap uniformly in n. Therefore the latter result
holds also for gap(L′) and gap(L).

Example 3.5. Along the lines of the previous example we could lower
bound the spectral gap of the FA-2f model in Z

d, d ≥ 2, with that in
Z

2, by restricting the sets A ∈ C0 to e.g. the (e1, e2)-plane.

For a last and more detailed example of the comparison technique we
refer the reader to section 6.

Although the comparison technique can be quite effective in proving
positivity of the spectral gap, one should keep in mind that, in general,
it provides quite poor bounds, particularly in the limiting case q ↓ qc.

The second observation we make consists in relating gap(L) when
the underlying graph is infinite to its finite graph analogue. Fix r ∈ V
and let Gn,r ⊂ G be the connected ball centered at r of radius n. Suppose
that infn gap(Lmax

Gn,r
) > 0. It is then easy to conclude that gap(L) > 0.

Indeed, following Liggett Ch.4 [27], for any f ∈ Dom(L) with
Var(f) > 0 pick fn ∈ L2(Ω,μ) depending only on finitely many spins
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so that fn → f and Lfn → Lf in L2. Then Var(fn) → Var(f) and
D(fn) → D(f). But since fn depends on finitely many spins

Var(fn) = VarGm,r(fn) and D(fn) = DGm,r(fn)

provided that m is a large enough square (depending on fn). Therefore

D(f)
Var(f)

≥ inf
n

gap(LGn,r) > 0.

and gap(L) ≥ infn gap(LGn,r) > 0.

4 Main Results for 0-1 KCSM on Regular Lattices

In this section we state some of the main results for a general 0-1 KCSM
on Z

d which have been obtained in [12].
Fix an integer length scale � larger than the range of the constraints

and let Z
d(�) ≡ �Z

d. Consider a partition of Z
d into disjoint rectangles

Λz := Λ0 + z, z ∈ Z
d(�), where Λ0 = {x ∈ Z

d : 0 ≤ xi ≤ � − 1, i =
1, .., d}.

Definition 4.1. Given ε ∈ (0, 1) we say that G� ⊂ {0, 1}Λ0 is a ε-
good set of configurations on scale � if the following two conditions are
satisfied:

(a) μ(G�) ≥ 1− ε.
(b) For any collection {ξ(x)}x∈K∗

0
of spin configurations such that ξ(x) ∈

G� for all x ∈ K∗
0 , the following holds. For any ξ ∈ Ω which coin-

cides with ξ(x) in ∪x∈K∗
0
Λ�x, there exists a sequence of legal moves

inside ∪x∈K∗
0
Λ�x (i.e. single spin moves compatible with the con-

straints) which transforms ξ into a new configuration τ ∈ Ω such
that the Markov chain in Λ0 with boundary conditions τ is ergodic.

Remark 4.2. In general the transformed configuration τ will be identi-
cally equal to zero on ∂∗+Λ0. It is also clear that assumption (b) has
been made having in mind models like the East, the FA-jf or the N-E
which, modulo rotations, are dominated by a model with influence class
C̃x entirely contained in the sector {y : y = x +

∑d
i=1 αiei, αi ≥ 0}.

If this is not the case one should instead use a non rectangular geom-
etry for the tiles of the partition of Z

d, adapted to the choice of the
influence classes. For example for the Spiral Model the basic tile at
length scale � is a quadrangular region R0 with one side parallel to
e1 and two sides parallel to e1 + e2, R0 := ∪�1S0 + (i − 1)(e1 + e2)
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with S0 := {x ∈ Z
2 : 0 ≤ x1 ≤ � − 1, x2 = 0}. In this case condi-

tion (b) should also be modified by substituting everywhere ∂∗+Λ0 with
∂̃∗+Λ0 := e1, e1 − e2,−e2.

With the above notation the first main result of [12] can be formulated
as follows.

Theorem 4.3 There exists a universal constant ε0 ∈ (0, 1) such that,
if there exists � and a ε0-good set G� on scale �, then infΛ∈F gap(Lmax

Λ )
> 0. In particular gap(L) > 0.

In several examples, e.g. the FA-jf models, the natural candidate for
the event G� is the event that the tile Λ0 is “internally spanned”, a
notion borrowed from bootstrap percolation [2, 34, 14, 24, 15]:

Definition 4.4. We say that a finite set Γ ⊂ Z
d is internally spanned

by a configuration η ∈ Ω if, starting from the configuration ηΓ equal to
one outside Γ and equal to η inside Γ , there exists a sequence of legal
moves inside Γ which connects ηΓ to the configuration identically equal
to zero inside Γ and identically equal to one outside Γ .

Of course whether or not the set Λ0 is internally spanned for η depends
only on the restriction of η to Λ0. One of the major results in bootstrap
percolation problems has been the exact evaluation of the μ-probability
that the box Λ0 is internally spanned as a function of the length scale
� and the parameter q [24, 34, 14, 15, 2]. For non-cooperative models
it is obvious that for any q > 0 such probability tends very rapidly
(exponentially fast) to one as � → ∞, since the existence of at least
one completely empty finite set B+x ⊂ Λ0 (see definition 2.8), allows to
empty all Λ0. For some cooperative systems like e.g. the FA-2f in Z

2, it
has been shown that for any q > 0 such probability tends very rapidly
(exponentially fast) to one as �→∞ and that it abruptly jumps from
being very small to being close to one as � crosses a critical scale �c(q).
In most cases the critical length �c(q) diverges very rapidly as q ↓ 0.
Therefore, for such models and � > �c(q), one could safely take G� as
the collection of configurations η such that Λ0 is internally spanned
for η. We now formalize what we just said.

Corollary 4.5 Assume that lim�→∞ μ(Λ0 is internally spanned ) = 1
and that the Markov chain in Λ0 with zero boundary conditions on
∪x∈K∗

0
Λ�x is ergodic. Then gap(L) > 0.

We stress that for some models a notion of good event which dif-
fers from requiring internal spanning is needed. This is the case for the
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N-E and Spiral models, as can be immediately seen by noticing that at
any length scale it is possible to construct small clusters of particles in
proper corners of the tiles that can never be erased by internal moves.
The choice of the proper ε-good set of configurations for N-E has al-
ready been discussed in [12]. For the Spiral Model the definition which
naturally arises from the results in [9] is the following. Let R̃0 be the re-
gion obtained from R0 by subtracting two proper quadrangular regions
at the bottom left and top right corners, namely R̃0 := R0 \(Rbl∪Rtr)
where Rbl (Rtr) have the same shape of R0 shrinked at length scale
�/4 and have the bottom left (top right) corner which coincides with
the one of R0. The ε-good set of configurations on scale �, G�, includes
all configurations η such that there exists a sequence of legal moves
inside R0 which connects ηR0 (the configuration which has all ones
outside R0 and equals η inside) to a configuration identically equal to
zero inside R̃0. Lemma 4.7 and Proposition 4.9 of [9] prove, respec-
tively, property (a) and (b) of Definition 4.1 (with ∂∗+Λ0 substituted
with e1, e1 − e2,−e2, see remark 4.2) when the density is below the
critical density of oriented percolation. Thus, using this definition for
the good event and Theorem 4.3 we conclude that

Theorem 4.6 gap(Lspiral) > 0 at any ρ < poc.

The second main result concerns the long time behavior of the persis-
tence function F (t) defined in (3.2).

Theorem 4.7 Assume that gap(L) > 0. Then F (t) ≤ e−q gap t +
e−p gap t.

Remark 4.8. The above theorems disprove some conjectures which ap-
peared in the physics literature [21, 23, 5, 6], based on numerical sim-
ulations and approximate analytical treatments, on the existence of
a second critical point q′c > qc at which the spectral gap vanishes
and/or below which F (t) would decay in a stretched exponential form
* exp(−t/τ)β with β < 1.

Theorem 4.7 also indicates that one can obtain upper bounds on
the spectral gap by proving lower bounds on the persistence function.
Concretely a lower bound on the persistence function can be obtained
by restricting the μ-average to those initial configurations η for which
the origin is blocked with high probability for all times s ≤ t. Unfor-
tunately in most models such a strategy leads to lower bound on F (t)
which are usually quite far from the above upper bound and it is an
interesting open problem to find an exact asymptotic as t→∞ of F (t).
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Finally we observe that for the North-East model on Z
2 at the

critical value q = qc the spectral gap vanishes and the persistence
function satisfies

∫∞
0 dt F (

√
t) = ∞ (see Theorem 6.17 and Corollary

6.18 in [12]).

4.1 Some Ideas of the Strategy for Proving Theorems 4.3, 4.7

The main idea behind the proof of theorem 4.3 goes as follows. First of
all one covers the lattice with non overlapping cubic blocks {Λ�x}x∈Zd

and, on the rescaled lattice Z
d(�) := �Zd, one considers the new model

with single spin space S = {0, 1}�d , good event G := G�, single site mea-
sure the restriction of μ to S and renormalized constraints {crenx }x∈Zd(�)

which are a strengthening of the North-East ones namely

crenx (η) = 1 iff ηy ∈ G for all y ∈ K∗
x.

Such a model is referred to in [12] as the *-general model. By assump-
tion the probability of G can be made arbitrarily close to one by taking
� large enough and therefore, by the so called Bisection-Constrained
approach which is detailed in the next section for the case when μ is
a high temperature Gibbs measure, the spectral gap of the *-general
model is positive. Next one observes that assumption (b) of the theo-
rem is there exactly to allow one to reconstruct any legal move of the
*-general model, i.e. a full update of an entire block of spins, by means
of a finite (depending only on �) sequence of legal moves for the original
0-1 KCMS. It is then an easy step, using standard path techniques for
comparing two different Markov chains (see e.g. [33]), to go from the
Poincaré inequality for the *-general model to the Poincaré inequality
for the original model.

The proof of (a slightly less precise version of) Theorem 4.7 given in
[12] is based on the Feynman-Kac formula and standard large deviation
considerations. However it is possible to provide a simpler and more
precise argument as follows. One first observe that F (t) = F1(t)+F0(t)
where

F1(t) =
∫
dμ(η) P(ση0(s) = 1 for all s ≤ t)

and similarly for F0(t). Consider now F1(t), the case of F0(t) being
similar, and define TA(η) as the hitting time of the setA := {η : η0 = 0}
starting from the configuration η. Then (see e.g. Theorem 2 in [1])

F1(t) = Pμ

(
TA > t

)
≤ e−tλA
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where Pμ denotes the probability over the process started from the
equilibrium distribution μ and λA is given by the variational formula
for the Dirichlet problem

λA := inf
{
D(f) : μ(f2) = 1, f ≡ 0 on A

}
(4.1)

Notice that for any f as above Var(f) ≥ μ(A) = q. Therefore λA ≥ q
gap and the proof is complete.

4.2 Asymptotics of the Spectral Gap Near the Ergodicity
Threshold

An important question, particularly in connection with numerical sim-
ulations or non-rigorous approaches, is the behavior near the ergodicity
threshold qc of the spectral gap for each specific model. Here is a set of
results proven in [12].

1. East Model.

lim
q→0

log(1/ gap)/(log(1/q))2 = (2 log 2)−1 (4.2)

2. FA-1f. For any d ≥ 1, there exists a constant C = C(d) such that
for any q ∈ (0, 1), the spectral gap on Z

d satisfies:

C−1q3 ≤ gap(L) ≤ Cq3 for d = 1,
C−1q2/ log(1/q) ≤ gap(L) ≤ Cq2 for d = 2,

C−1q2 ≤ gap(L) ≤ Cq1+ 2
d for d ≥ 3.

3. FA-df in Z
d. Fix ε > 0. Then there exists c = c(d) such that

[
expd−1(c/q2)

]−1
≤ gap(L) ≤

[
expd−1

(λ1 − ε
q

)]−1
d ≥ 3

exp(−c/q5) ≤ gap(L) ≤ exp
(
−(λ1 − ε)

q

)
d = 2

(4.3)

as q ↓ 0, where expd−1 denote the (d−1)th-iterate of the exponential
function and λ1 = π2/18.

The proof of the lower bounds is a rather delicate combination of the
renormalization scheme described above together with paths techniques
as described in [33]. The upper bounds are proved instead either by a
careful choice of a test function in the variational characterization of
the spectral gap or by a lower bound on the persistence function F (t)
combined with the upper bound given in Theorem 4.7.
Remark 4.9. Again some of the above findings disprove previous claims
for the East model [36] and for the FA-1f model in d = 2, 3 [6].
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The result for the East model actually came out as a surprise. In [36]
the model was considered “essentially” solved and the result for the
spectral gap was gap ≈ qlog2(q) as q ↓ 0 to be compared to the correct
scaling qlog2(q)/2. In [4] the above solution was proved to be a lower
bound and an upper bound of the form qlog2(q)/2 was rigorously es-
tablished but considered poor because off by a power 1/2 from the
supposedly correct behavior.

The scaling indicated in [36] is based in part on the following con-
sideration. Fix q � 1 and consider the East model on the interval
Λq := [0, . . . , 1/q] with the last site free to flip (i.e. zero boundary
conditions). Notice that 1/q is the average distance between the zeros.
Start from the configuration identically equal to one and let T be the
(random) time at which the origin is able to flip. Energy barriers con-
sideration (see [3, 4, 16]) suggest that E(T ) should scale as qlog2(q) and
that is what was assumed in [36]. However it is not difficult to prove
that the scaling of E(T ) is bounded above by (q gap)−1. Indeed we can
write for any t ≥ 0

exp(−cq gap(LΛq)t) ≥ F̃ (t) ≥ μ(all ones)P(T ≥ t) ≥ e−2
P(T ≥ t)

where F̃ (t) is the finite volume persistence function. Integrating over t
and using the monoticity of the gap (see [12, Lemma 2.11]) give E(T ) ≤
e2c(q gap(LΛq)))

−1 ≤ e2c(q gap(L))−1. This, in view of Theorem 4.3, is
incompatible with the assumed scaling qlog2(q).

Moreover one can obtain a lower bound on E(T ) as follows. Let λ
be such that P(T ≥ λ) = e−1 then clearly P(T ≥ t) ≤ e−�t/λ� and
E(T ) ≥ e−1λ. We can always couple in the natural way two copies of
the process, one started from all ones and the other from any other
configuration η, and conclude that

P(the two copies have not coupled at time t) ≤ P(T ≥ t) ≤ e1−λt.

Standard arguments give immediately that gap−1 ≤ λ i.e. E(T ) ≥
e−1 gap−1. In conclusion

e−1
[
gap(LΛq)

]−1 ≤ E(T ) ≤ e2c
[
q gap(LΛq)

]−1

5 Extension to Interacting Models

In this section we show how to extend the results on the positivity
of the spectral gap for 0-1 KCSM on a regular lattice Z

d to the case
in which a weak interaction is present among the spins. We begin by
defining what we mean by an interaction.
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Definition 5.1. A finite range interaction Φ is a collection Φ :=
{ΦΛ}Λ∈F where

i) ΦΛ : ΩΛ �→ R for every Λ ∈ F;
ii) ΦΛ = 0 if diam(Λ) ≥ r for some finite r = r(Φ) called the range of

the interaction;
iii) ‖Φ‖ ≡ supx∈Zd

∑
Λ�x ‖ΦΛ‖∞ <∞;

We will say that Φ ∈ BM,r if r(Φ) ≤ r and ‖Φ‖ ≤M .

Given an interaction Φ ∈ Br,M and Λ ∈ F, we define the energy in Λ of
a spin configuration σ ∈ Ω by

HΛ(σ) =
∑

A∩Λ�=∅
ΦA(σ)

For σ ∈ ΩΛ and τ ∈ ΩΛc we also let HτΛ(σ) := HΛ(σ · τ) where σ · τ
denotes the configuration equal to σ inside Λ and to τ outside it. Finally,
for any Λ ∈ F and τ ∈ ΩΛc , we define the finite volume Gibbs measure
on ΩΛ with boundary conditions τ and apriori single spin measure ν
by the formula

μΦ,τΛ (σ) :=
1

ZΦ,τΛ
e−H

τ
Λ(σ)

∏

x∈Λ
ν(σx)

where ZΦ,τΛ is a normalization constant.
The key property of Gibbs measures is that, for any V ⊂ Λ and any ξ

in Λ\V , the conditional Gibbs measure in Λ with boundary conditions τ
given ξ coincides with the Gibbs measure in V with boundary condition
τΛc · ξ. More formally

μΦ,τΛ (· |σV c = ξ) = μΦ,τΛc ·ξ
V (·)

Clearly averages w.r.t. μΦ,τΛ (· |σV c = ξ) are function of ξ and, when-
ever confusion does not arise, we will systematically drop ξ from our
notation.

As it is well known (see e.g. [35]), for any r <∞ there existsM0 > 0
such that for any 0 < M < M0 the following holds. For any Φ ∈ Br,M
there exists a unique probability measure μΦ on Ω, called the unique
Gibbs measure associated to the interaction Φ with apriori measure ν,
such that, for any τ ,

lim
Λ↑Zd

μΦ,τΛ = μΦ



326 N. Cancrini et al.

where the limit is to be understood as a weak limit. Moreover the limit
is reached “exponentially fast” in the strongest possible sense. Namely,
for any Δ ⊂ Λ ∈ F and any two boundary conditions τ, τ ′,

max
σΔ

∣∣∣
μΦ,τ

′

Λ (σΔ)

μΦ,τΛ (σΔ)
− 1

∣∣∣ ≤ K|Dr(τ, τ ′)| e−md
(
Δ,Dr(τ,τ ′)

)
(5.1)

where Dr(τ, τ ′) = {y : 0 < d(y, Λ) ≤ r, τy �= τ ′y} and the constants
m,K depend only on M, r, d. Moreover m ↑ +∞ as M ↓ 0. When
d = 1 the threshold M0 can be taken equal to +∞. In all what follows
we will always assume that Φ ∈ Br,M for some apriori given r,M and
that M < M0.

Remark 5.2. In general the constant M0 does not coincide with any
“critical point” for the model. It is only a sort of “high temperature
threshold” (see [29, 30, 31] for more details about this issue).

Having described the notion of the unique Gibbs measure corresponding
to Φ, we can define the generator LΦ of a 0-1 KCSM with interaction
Φ and constraints cx given by (2.1), as the unique self-adjoint operator
on L2(Ω,μΦ) with quadratic form

DΦ(f) =
∑

x

μΦ
(
cxVarΦx (f)

)
, f local

where now the local variance VarΦx (f) is computed with the conditional
Gibbs measure given all the spins outside x. The construction of the
generator in a finite volume Λ with boundary conditions τ is exactly
the same as in the non-interacting case and we skip it.

5.1 Spectral Gap for a Weakly Interacting North-East Model

Instead of trying to prove a very general result on the spectral gap
of a weakly interacting KCSM, we will explain how to deal with the
interaction in the concrete case of the North-East model introduced
in section 2.4. Moreover, in order not to obscure the discussion with
renormalization or block constructions, we will make the unnecessary
assumption that the basic parameter q of the reference measure ν is
very close to one.

Theorem 5.3 Let {cx}x∈Z2 be those of the North-East model. There
exists q0 ∈ (0, 1) and for any r <∞ there exists M1 such that, for any
M < min(M0,M1) and q ≥ q0,

inf
Φ∈Br,M

gap(LΦ) > 0
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Remark 5.4. As we will see in the proof of the theorem, the restriction
on strength of the interaction comes from two different requirements.
The first one is that the finite volume Gibbs measure has the very strong
mixing property uniformly in the boundary conditions given in (5.1).
That, as we pointed out previously, is guaranteed as long as M < M0.
The second one requires that the zeros, which certainly percolate in a
robust way w.r.t. the unperturbed measure ν because of the assumption
q ≈ 1, continue to do so even when we switch on the interaction. It is
worthwhile to observe that for the one dimensional East model, the
first requirement is satisfied for any M <∞ and that the second one is
simply not necessary. Therefore for the East model the above theorem
should be reformulated as follows.

Theorem 5.5 Let {cx}x∈Z be those of the East model. For any finite
pair (r,M)

inf
Φ∈Br,M

gap(LΦ) > 0

Proof (of Theorem 5.3). We will follow the pattern of the proof for the
non interacting case given in [12] and we will establish the stronger
result

sup
Λ∈F

γ(Λ) < +∞, where γ(Λ) :=
(

inf
Φ∈Br,M

inf
τ∈MaxΛ

gap(LΦ,τΛ )
)−1

(5.2)

provided that q > q0 is large and M is taken sufficiently small. Above
MaxΛ denotes the set of configurations in ΩΛc which are identically
equal to zero on ∂∗+Λ. In what follows in order to simplify the notation
we will not write the dependence on the boundary condition of the
transition rates.

As in [12] the first step consists in proving a certain monotonicity
property of γ(Λ).

Lemma 5.6 For any V ⊂ Λ ∈ F,

0 < γ(V ) ≤ γ(Λ) <∞

Proof (Proof of the Lemma). Fix Φ ∈ Br,M and, for any ξ ∈ MaxV ,
define the new interaction Φξ as follows:

ΦξA(σA) =

{
0 if A ∩ V c �= ∅∑
A′:A′∩V=A ΦA′(σA · ξA′\A) if A ⊂ V
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Notice that, by construction,

r(Φξ) ≤ r(Φ) and sup
x

∑

A�x
‖ΦξA‖∞ ≤ ‖Φ‖∞

so that Φξ ∈ Br,M . Next observe that the Gibbs measure on Λ with
interaction Φξ is simply the product measure

μΦ
ξ

Λ (σΛ) := μΦ,ξV (σV )⊗ νΛ\V (σΛ\V ) on ΩΛ = ΩV ⊗ΩΛ\V

Thus, for any f ∈ L2(ΩV , μ
Φ,ξ
V ) and τ ∈ MaxΛ, we can write (VarΦ,τΛ ≡

Var
μΦ,τ

Λ
)

VarΦ,ξV (f) = VarΦ
ξ,τ
Λ (f) ≤ γ(Λ)DΦ

ξ,τ
Λ (f) ≤ γ(Λ)DΦ,ξV (f)

where, in the last inequality, we used the fact that, for any x ∈ V and
any ω ∈ ΩΛ, cx,Λ(ω) ≤ cx,V (ω) because ξ ∈ MaxV , together with

VarΦ
ξ,τ
Λ (f | {σy}y �=x) = VarΦ,ξV (f | {σy}y �=x).

��

Thanks to Lemma 5.6 we need to prove (5.2) only when Λ runs through
all possible rectangles. For this purpose our main ingredient will be the
bisection technique of [28] which, in its essence, consists in proving a
suitable recursion relation between spectral gap on scale 2L with that
on scale L, combined with the novel idea of considering an accelerated
block dynamics which is itself constrained. Such an approach is referred
to in [12] as the Bisection-Constrained or B-C approach.

In order to present it we first need to recall some simple facts from
two dimensional percolation.

A path is a collection {x0, x1, . . . , xn} of distinct points in Z
2 such

that d(xi, xi+1) = 1 for all i. A ∗-path is a collection {x0, x1, . . . , xn} of
distinct points in Z

2 such that xi+1 ∈ N ∗
xi

for all i. Given a rectangle Λ
and a direction ei, we will say that a path {x0, . . . , xn} traverses Λ in
the ith-direction if {x0, . . . , xn} ⊂ Λ and x0, xn lay on the two opposite
sides of Λ orthogonal to ei.

Definition 5.7. Given a rectangle Λ and a configuration ω ∈ ΩΛ, a
path {x0, . . . , xn} is called a top-bottom crossing ( left-right crossing)
if it traverses Λ in the vertical (horizontal) direction and ωxi = 0 for
all i = 0, . . . , n. The rightmost (lower-most) such crossings (see [22]
page 317) will be denoted by Πω.
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Remark 5.8. Given a rectangle Λ and a path Γ traversing Λ in e.g. the
vertical direction, let ΛΓ consists of all the sites in Λ which are in Γ or
to the right of it. Then, as remarked in [22], the event {ω : Πω = Γ}
depends only on the variables ωx with x ∈ ΛΓ .

We are now ready to start the actual proof of the theorem. At the
beginning the method requires a simple geometric result (see [7]) which
we now describe.

Let lk := (3/2)k/2, and let Fk be the set of all rectangles Λ ⊂ Z
2

which, modulo translations and permutations of the coordinates, are
contained in [0, lk+1] × [0, lk+2]. The main property of Fk is that each
rectangle in Fk \Fk−1 can be obtained as a “slightly overlapping union”
of two rectangles in Fk−1.

Lemma 5.9 For all k ∈ Z+, for all Λ ∈ Fk \ Fk−1 there exists a finite
sequence {Λ(i)

1 , Λ
(i)
2 }

sk
i=1 in Fk−1, where sk := 0l1/3k 1, such that, letting

δk := 1
8

√
lk − 2,

(i) Λ = Λ(i)
1 ∪ Λ(i)

2 ,
(ii) d(Λ \ Λ(i)

1 , Λ \ Λ
(i)
2 ) ≥ δk,

(iii)
(
Λ

(i)
1 ∩ Λ(i)

2

)
∩
(
Λ

(j)
1 ∩ Λ(j)

2

)
= ∅, if i �= j.

The B-C approach then establishes a simple recursive inequality be-
tween the quantity γk := supΛ∈Fk

γ(Λ) on scale k and the same quantity
on scale k − 1 as follows.

Fix Λ ∈ Fk \ Fk−1 and write it as Λ = Λ1 ∪ Λ2 with Λ1, Λ2 ∈ Fk−1

satisfying the properties described in Lemma 5.9 above. Without loss
of generality we can assume that all the horizontal faces of Λ1 and of
Λ2 lay on the horizontal faces of Λ except for the face orthogonal to
the first direction e1 and that, along that direction, Λ1 comes before
Λ2. Set Δ ≡ Λ1 ∩ Λ2 and write, for definiteness, Δ = [a1, b1]× [a2, b2].
Lemma 5.9 implies that the width of Δ in the first direction, b1 − a1,
is at least δk. Set also

I ≡ [a1 + (b1 − a1)/2, b1]× [a2, b2]

and let ∂rI = {b1} × [a2, b2] be the right face of I along the first
direction.

Definition 5.10. Given a configuration ω ∈ Ω we will say that ω is
I-good iff there exists a top-bottom crossing of I.
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B1 B2 = Λ 2

Δ

Fig. 1. The rectangle Λ divided into two blocks B1 and B2. The grey region
is the strip I with a top-bottom crossing.

Given τ ∈ MaxΛ, we run the following constrained “block dynamics”
on ΩΛ (in what follows, for simplicity, we suppress the index i) with
boundary conditions τ and blocks B1 := Λ1 \ I, B2 := Λ2. The block
B2 waits a mean one exponential random time and then the current
configuration inside it is refreshed with a new one sampled from the
Gibbs measure of the block given the previous configuration outside it
(and τ outside Λ). The block B1 does the same but now the configura-
tion is refreshed only if the current configuration ω in B is I-good (see
Figure 1).

The generator of the block dynamics applied to f can be written as

Lblockf = c1(μ
Φ,τ
B1

(f)− f) + μΦ,τB2
(f)− f (5.3)

and the associated Dirichlet form is

DΦ,τblock(f) = μΦ,τΛ
(
c1 VarΦB1

(f) + VarΦB2
(f)

)

where c1(ω) is just the indicator of the event that ω is I-good.

Remark 5.11. The reader should keep in mind that the notation

μΦ,τΛ
(
c1 VarΦB1

(f)
)

stands for
∑
ξ μ
Φ,τ
Λ (ξ)c1(ξ) VarΦ,ξB1

(f) and that one can imagine the sum
restricted to those configurations outside B1 that coincide with τ out-
side Λ since otherwise their probability μΦ,τΛ (ξ) is zero.

In order to study the mixing property of the chain we need the following
two lemmas.
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Lemma 5.12 ([28]) Fix (r,M) with M < M0. Then, for any Φ ∈
Br,M ,

sup
τ ′
|μΦ,τ

′

B1
(g)− μΦ,τΛ (g)| ≤ λk ‖g‖∞ ∀g : ΩBc

2
�→ R

sup
τ ′
|μΦ,τ

′

B2
(g)− μΦ,τΛ (g)| ≤ λk ‖g‖∞ ∀g : ΩBc

1
�→ R (5.4)

where λk := Krlk+1e
−mδk/2 and the constants K,m are given in (5.1).

Lemma 5.13 There exists q0 ∈ (0, 1) and for any r < ∞ there exists
M1 such that, for any M < min(M0,M1) and q ≥ q0,

εk := max
Φ∈Br,M

max
τ
μΦ,τB2

(ω is not I-good ) ≤ e−δk .

Proof. It follows immediately from standard percolation arguments
together with

sup
Φ∈Br,M

sup
τ
μΦ,τ{x}(σx = 1) ≤ (1− q)e2M

��

We can now state the main consequence of Lemma 5.12, 5.13.

Proposition 5.14 There exists q0 ∈ (0, 1) and for any r < ∞ there
exists M1 such that, for any M < min(M0,M1) and q ≥ q0,

γ
(k)
block := sup

Φ∈Br,M

sup
τ∈MaxΛ

(
gap(LΦ,τblock)

)−1
≤

(
1− 8

√
2λk + εk

)−1

(5.5)
for all k so large that the r.h.s. of (5.5) is smaller than 2.

Proof (Proof of the proposition). Fix r,M and Φ as prescribed, let τ ∈
MaxΛ and, in order to simplify the notation, drop all the superscripts
Φ, τ . Let f : ΩΛ �→ R be a mean zero function, the eigenvalue equation
associated to the generator (5.3) is

c1(μB1(f)− f) + μB2(f)− f = λf (5.6)

By construction λ ≥ −2.
Assume that λ > −1 +

√
λk since otherwise there is nothing to be

proved. By applying μB1 to both sides of (5.6) and using (5.4) we obtain

(1 + λ)μB1f = μB1

(
μB2(f)

)
⇒ ‖μB1(f)‖∞ ≤

√
λk ‖μB2(f)‖∞

(5.7)
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If we rewrite (5.6) as

f =
1

1 + λ+ c1
μB2(f) +

c1
1 + λ+ c1

μB1(f)

and apply μB2 to both sides, by using (5.7) together with the assump-
tion λ > −1 +

√
λk, we get

‖μB2(f)‖∞ ≤ ‖μB2(f)‖∞ ‖μB2(
1

1 + λ+ c1
)‖∞

+λk‖
c1

1 + λ+ c1
‖∞‖μB1(f)‖∞

≤ ‖μB2(f)‖∞
(
‖μB2(

1
1 + λ+ c1

)‖∞ +
√
λk

)
(5.8)

which is possible only if

‖μB2(
1

1 + λ+ c1
)‖∞ ≥ 1−

√
λk

i.e.
λ ≤ −1 + 8

√
2λk + εk

and the proof is complete. ��

By writing down the standard Poincaré inequality for the block auxil-
iary chain, we get that for any f

VarΦ,τΛ (f) ≤ γ(k)
block μ

Φ,τ
Λ

(
c1 VarΦB1

(f) + VarΦB2
(f)

)
(5.9)

The second term in the r.h.s. of (5.9), using the definition of γk and
the fact that B2 = Λ2 ∈ Fk−1 is bounded from above by

μΦ,τΛ

(
VarΦB2

(f)
)
≤ γk−1

∑

x∈B2

μΦ,τΛ
(
cx,B2 VarΦx (f)

)
(5.10)

Notice that, by construction, for all x ∈ B2 and all ω, cx,B2(ω) =
cx,Λ(ω). Therefore the term

∑
x∈B2

μΦ,τΛ
(
cx,B2 VarΦx (f)

)
is nothing but

the contribution carried by the set B2 to the full Dirichlet form DΦ,τΛ (f).

Next we examine the more complicate term μΦ,τΛ

(
c1 VarΦB1

(f)
)
. For

any ω such that there exists a rightmost crossing Πω in I denote by Λω
the set of all sites in Λ which are to the left of Πω. Since VarΦB1

(f) de-
pends only on ωΛ\B1

and, for any top-bottom crossing Γ of I, 1I{Πω=Γ}
does not depend on the variables ω’s to the left of Γ , we can write
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μΦ,τΛ

(
c1 VarΦB1

(f)
)

= μΦ,τΛ
(
1I{∃Πω in I}μ

Φ
Λω

(
VarΦB1

(f)
))

(5.11)

The convexity of the variance implies that

μΦΛω

(
VarΦB1

(f)
)
≤ VarΦΛω

(f)

where it is understood that the r.h.s. depends on the variables in Πω
and to the right of it. The key observation at this stage, which explains
the role and the need of the event {∃ Πω in I}, is the following. For
any ω such that Πω exists the variance VarΦΛω

(f) is computed with
boundary conditions (τ outside Λ and ωΛ\Λω

) which belong to MaxΛω .
Therefore we can bound it from above using the Poincaré inequality by

VarΦΛω
(f) ≤ γ(Λω)DΦΛω

(f) ≤ γ(B1 ∪ I)DΦΛω
(f)

where we used Lemma 5.6 together with the observation that Λω ⊂
B1 ∪ I = Λ1. In conclusion

μΦ,τΛ

(
1I{∃Πω in I}μ

Φ
Λω

(
VarΦB1

(f)
))

≤ γ(Λ1)μ
Φ,τ
Λ

(
1I{∃Πω in I}DΦΛω

(f)
)

≤ γ(Λ1)μ
Φ,τ
Λ

(
1I{∃Πω in I}

∑

x∈Λω

cx,Λω VarΦx (f)
)

≤ γ(Λ1)μ
Φ,τ
Λ

(∑

x∈Λ1

cx,ΛVarΦx (f)
)

because, by construction, for every ω such that there exists Πω in I

cx,Λω(ω) = cx,Λ(ω) ∀x ∈ Λω . (5.12)

If we finally plug (5.1) into the r.h.s. of (5.11) and recall that Λ1 ∈
Fk−1, we obtain

μΦ,τΛ

(
c1 VarΦB1

(f)
)
≤ γk−1 μ

Φ,τ
Λ

(∑

x∈Λ1

cx,ΛVarΦx (f)
)

(5.13)

In conclusion we have shown that

VarΦ,τΛ (f) ≤ γ(k)
blockγk−1

(
DΦ,τΛ (f) +

∑

x∈Δ
μΦ,τΛ

(
cx,ΛVarx(f)

))
(5.14)

Averaging over the sk = 0l1/3k 1 possible choices of the sets Λ1, Λ2 gives

VarΛ(f) ≤ γ(k)
blockγk−1(1 +

1
sk

)DΛ(f) (5.15)
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which implies that

γk ≤ (1 +
1
sk

)γ(k)
blockγk−1 ≤ γk0

k∏

j=k0

(1 +
1
sj

)γ(j)
block (5.16)

where k0 is the smallest integer such that γ(k0)
block < 2. If we now re-

call the expression (5.5) for γ(j)
block together with Lemma 5.12 and

5.13, we immediately conclude that the product
∏∞
j=k0

γ
(j)
block(1 + 1

sj
) is

bounded. ��

6 One Spin Facilitated Model on a General Graph

In this section we prove our second set of new results by examining the
one spin facilitated model (FA-1f in short) on a general connected graph
G = (V,E). Our motivation comes from some unpublished speculation
by D. Aldous [3] that, in this general setting, the FA-1f may serve as
an algorithm for information storage in dynamic graphs.

We begin by discussing the finite setting. Let r be one of the vertices
and T be a rooted spanning tree of G with root r. On Ω = {0, 1}V
consider the FA-1f constraints:

{
cx,G(ω) = 1 if ωy = 0 for some neighbor y of x
0 otherwise

(6.1)

and let ĉx,G = cx,G if x �= r and ĉr,G ≡ 1. Let L̂ be the corresponding
Markov generator and notice that associated Markov chain is ergodic
since the vertex r is unconstrained. For shortness we will refer in the
sequel to L̂ as the (G, r, FA-1f) model. Our first result reads as follows.

Theorem 6.1

gap(G, r,FA-1f) ≥ gap(Z,East)

Proof. By monotonicity ĉx,G(ω) ≥ ĉx,T (ω) and therefore gap(G, r, FA-
1f) ≥ gap(T , r,FA-1f). We can push the monotonicity argument a bit
further and consider the following (T , r,East) model:

c̃x,T (ω)=

{
1 if eitherx=r or ωy=0, where y is the ancestor (in T ) of x
0 otherwise

(6.2)
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a

A

B

rv v1

Γv

Fig. 2. The subtrees A and B.

Clearly ĉx,T (ω) ≥ c̃x,T (ω) and therefore gap(G, r,FA-1f) ≥ gap(T , r,
East). We will now proceed to show that

gap(T , r,East) ≥ gap(Z,East) (6.3)

If all the vertices of T have degree 2 with the exception of the root
and the leaves, i.e. if T ⊂ Z, then (6.3) follows from [12, Lemma 2.11].
Thus let us assume that there exists x ∈ T with Δx ≥ 3 and let us
order the vertices of T by first assigning some arbitrary order to all
vertices belonging to any given layer (≡ same distance from the root)
and then declaring x < y iff either d(x, r) < d(y, r) or d(x, r) = d(y, r)
and x comes before y in the order assigned to their layer. Let v be
equal to the root if Δr ≥ 2 or equal to the first descendant of r with
degree Δv ≥ 3 otherwise and let Γv = {r, v1, . . . , vk, v} be the path in
T leading from r to v. Let a be a child of v and let Ta = (Va, Ea) be
the subtree of T rooted in a. Finally we denote by A and B the two
subgraphs of T : A := Γv ∪ Ta, B := T \ Ta. (see Fig. 2).

Lemma 6.2

gap(T , r,East) ≥ min (gap(A, r,East), gap(B, r,East)) (6.4)

By recursively applying the above result to A and B separately, we
immediately reduce ourselves to the case of a tree T ′ ⊂ Z and the
proof of the theorem is complete. ��

Proof (of Lemma 6.2). In L2(Ω,μ) consider the set HB of functions
f that do not depend on ωx, x ∈ Ta. Because of the choice of the
constraints c̃x,T (ω), HB is an invariant subspace for the generator of
the (T , r,East) model and
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inf
f∈HBμ(f)=0

D̃(f)
Var(f)

= gap(B, r,East) (6.5)

Let us now consider the orthogonal subspace H⊥
B. Any zero mean

element f ∈ H⊥
B satisfies μTa(f) = 0 and therefore we can write

Var(f) = μ (VarTa(f)) ≤ μ (VarA(f))

≤ gap(A, r,East)−1
∑

x∈A
μ (c̃x,AVarx(f))

≤ gap(A, r,East)−1D̃(f)

where the first inequality follows from convexity of the variance and the
second one is nothing but the Poincaré inequality for the East model
in A. The proof of the Lemma follows at once from (6.5). ��

Theorem 6.1 has two consequences that will be the content of the
following Theorems. The first one deals with the case of an infinite
graph. The second one deals with the FA-1f model on general graph
G without the special unblocked vertex r but with the Markov chain
restricted to a suitable ergodic component.

Theorem 6.3 Let G∞ be an infinite connected graph of bounded degree
and let L be the generator of the FA-1f model on G∞ with constraints
{cx,G∞ , x ∈ V∞}, i.e. no apriori unblocked vertex. Then

gap(G∞,FA-1f) ≥ gap(Z,East)

Proof. The proof combines Theorem 6.1 together with the finite sub-
graph approximation described in section 3. ��
Theorem 6.4 Let G be as in Theorem 6.1 and let L+ be the FA-1f gen-
erator with constraints {cx,G}x∈V on the restricted configuration space
Ω+ := {η ∈ Ω :

∑
x∈V (1 − ηx) ≥ 1} equipped with the reversible

measure μ+ := μ(· |Ω+). Then

gap(L+) ≥ 1
2gap(Z,East)

Proof. As in the proof of Theorem 6.1 we can safely assume that G is a
tree T with root r ∈ V . We extend any f : Ω+ �→ R to a function f̃ on
Ω by setting f̃(ηy = 1 ∀y) ≡ f(ηy = 1 ∀y �= r, ηr = 0). Using Theorem
6.1, we then write

Var+(f) = Var+(f̃) ≤
(
μ(Ω+)

)−1 Var(f̃)

≤
(
μ(Ω+)

)−1 gap(T , r,East)−1
∑

x

μ
(
ĉx,T Varx(f̃)

)

where the constraints {ĉx,T }x∈T have been defined right after (6.1).
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Let us examine a generic term μ
(
ĉx,T Varx(f̃)

)
with x �= r. Re-

member that ĉx,T = cx,T and moreover cx,T (η) = 0 if ηy = 1 for all
y �= x. Furthermore, for any η such that there exists y �= x with ηy = 0,
μ+(ηx = 1 | {ηy}y �=x) = p. In conclusion we have shown that

μ
(
ĉx,T Varx(f̃)

)
= μ(Ω+)μ+

(
cx,T Var+x (f)

)
∀x �= r (6.6)

We now examine the dangerous term μ
(
ĉr,T Varr(f̃)

)
= μ

(
Varr(f̃)

)
.

Because of the definition of f̃ we can safely rewrite it as

μ
(
Varr(f̃)

)
= μ

(
χ{∃ y �=r: ηy=0} Varr(f)

)

Let us order the vertices of the tree T starting from the furthermost
ones by first assigning some arbitrary order to all vertices belonging
to any given layer (≡ same distance from the root) and then declaring
x < y iff either d(x, r) > d(y, r) or d(x, r) = d(y, r) and x comes before y
in the order assigned to their layer. Next, for any η such that ηy = 0 for
some y �= r, define ξ = min{y : ηy = 0} and let Tξ := {z ∈ T : z > ξ}
(see Fig. 3).

Notice that the subgraph Tξ is again a tree and we define its root
to be the ancestor v of ξ in T . Then, using convexity of the variance,
we can write

μ
(
χ{∃ y �=r: ηy=0} Varr(f)

)
= μ (χξ �=rμ (Varr(f) | ξ)) ≤ μ

(
χξ �=r VarTξ

(f)
)

In order to bound from above VarTξ
(f) we apply the Poincaré inequality

in Tξ with constraints {ĉz,Tξ
} and root v together with Theorem 6.1:

VarTξ
(f) ≤ gap(Z,East)−1

∑

z∈Tξ

μTξ

(
ĉz,Tξ

Varz(f)
)
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Fig. 3. An example of a tree T on the left, with a choice of an ordering. The
dotted line delimitates the subtree Tξ that we reproduce on the right, with
root v.
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Notice that, by construction, ĉz,Tξ
(η) = cz,T (η) for any z ∈ Tξ, includ-

ing the root v of Tξ where ĉv,Tξ
(η) = 1 by definition and cv,T (η) = 1

because ηξ = 0. Putting all together we conclude that

μ
(
χ{∃ y �=r: ηy=0}Varr(f)

)
≤gap(Z,East)−1

∑

x∈T
μ
(
χ{∃ y �=r:ηy=0}cx,T Varx(f)

)

≤ gap(Z,East)−1μ(Ω+)
∑

x∈T
μ+

(
cx,T Var+x (f)

)

where we have used once more the observation before (6.6) to write

cx,T Varx(f) = cx,T Var+x (f).

If we now combine the previous bounds, we get

Var+(f) ≤ 2 (gap(Z,East))−2
∑

x∈T
μ+

(
cx,T Var+x (f)

)

and the proof is complete. ��
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