LECTURE 24
 STATISTICAL REPRESENTATION MEASURES OF CENTRAL TENDENCY PART 1

OBJECTIVES

The objectives of the lecture are to learn about:

- Review Lecture 18
- Statistical Representation
- Measures of Central Tendency

LINE GRAPHS

Line graphs are the most commonly used graphs. In the following graph, you can see the occurrence of causes of death due to cancer in males and females. You can see that after the age of 40 , the occurrence of cancer is much greater in the case of males. The line graph of heart diseases also shows that the disease is more prominent in the case of males.
As you see line graphs help us to understand the trends in data very clearly.

LINE GRAPHS

Another line graph of temperature in 4 cities A, B, C and D shows that although the general pattern is similar, the temperature in city A is lowest followed by D, B and C . In city C the highest temperature is close to 30 whereas in city A and b it is about 25 . The highest temperature in city d is about 28 degrees.

LINE GRAPHS

Temperature of cities A, B, C and D

MEAN

The most common average is the mean. The mean is used for things like marks and scores (e.g. sport), and is found by adding all the scores and dividing by the number of scores.

Marks

58697367768891 and 74 (8 marks).
Sum = 596
Mean $=596 / 8=74.5$
Please note that the mean is affected by extreme values.

MEDIAN

Another typical value is the median. The median is the middle value when the data are arranged in order.
The median is easier to find than the mean, and unlike the mean it is not affected by values that are unusually high or low

Data

$\begin{array}{llllll}3 & 6 & 11 & 141919212431 \text { (9 values) }\end{array}$
The median is the middle score, or the mean of the two middle scores, when the scores are placed in order. In the above data there are 9 values. The middle value is 19 . When there is no middle value, the median is obtained by taking the average of the two middle values.

MODE

The most common score in a set of scores is called the mode.
There may be more than one mode, or no mode at all
2212032114111220321
The mode, or most common value, is 1 .

ORGANISING DATA

There are many different ways of organizing data.
Organising Numerical Data

Organizing Numerical Data

Numerical data can be organized in any of the following forms:

- The Ordered Array and Stem-leaf Display
- Tabulating and Graphing Numerical Data
- Frequency Distributions: Tables, Histograms, Polygons
- Cumulative Distributions: Tables, the Ogive

ORGANISING NUMERICAL

DATA

Data in Raw form (as collected)
$24,26,24,21,27,27,30,41,32,38$
Data Ordered from Smallest to Largest:
$21,24,24$, 6. $27,27,30,32,38,41$
Stem and Leaf display:

Tabulating and Graphing Univariate Categorical Data
There are different ways of organizing univariate categorical data:

- The Summary Table
- Bar and Pie Charts, the Pareto Diagram

Tabulating and Graphing Bivariate Categorical Data
Bivariate categorical data can be organized as :

- Contingency Tables
- Side by Side Bar charts

GRAPHICAL EXCELLENCE AND COMMON ERRORS IN PRESENTING DATA

It is important that data is organised in a professional manner and graphical excellence is achieved in its presentation. High quality and attractive graphs can be used to explain and highlight facts which otherwise may go unnoticed in descriptive presentations. That is why all companies in their annual reports use different types of graphs to present data.

Tabulating Numerical Data: Frequency Distributions
The process of developing frequency distributions is described below.

Step 1: Sort Raw Data in Ascending Order

Data: $12,13,17,21,24,24,26,27,27,30,32,35,37,38,41,43,44,46,53,58$
Step 2: Find Range
Range: 58-12 = 46

Step 3: Select Number of Classes

Select the number of classes. (The classes are usually selected between 5 and 15)
Say 5.
Step 4: Compute Class Interval (width)
= 10 (46/5 then round up)
Step 5: Determine Class Boundaries (limits)
Start with 10 as the first limit.
Then add 10 to each limit: 10, 20(=10+10), 30(=20+10), 40(=30+10), 50(=40+10)

Step 6: Compute Class Midpoints

First midpoint is $10+20 / 2=15$.
Midpoints: $15((10+20) / 2), 25((20+30) / 2), 35((30+40) / 2), 45((40+50) / 2), 55((50+60) / 2)$

Step 7: Count Observations \& Assign to Classes

First class: Lower limit is 10 . Higher limit is 20 . We read it as "10 but under 20". In reality a value greater than 19.5 will be treated as above 20.
Frequency: Looking through the data shows that there are three values between 10 and 20. Hence frequency is 3 . Similarly, frequency in other intervals can be found as follows:

20-30: 6
30-40:5
40-50: 4
50-60: 2
Total : 20
Relative frequency: There are 3 observations in class interval $10-20$. The relative frequency is $3 / 20=0.15$. Similarly frequency for other class intervals was calculated. Percentage Frequency: If we multiply 0.15 by 100, then the \% Relative Frequency 15% is obtained.

Cumulative Frequency: If we add frequency of the second interval to the frequency of the second interval, then the cumulative frequency for the second interval is obtained. The cumulative frequency of the last interval is 100% as all observations have been added.

10-20:15
20-30: 45
30-40: 70
40-50: 90
50-60: 100

LECTURE 25

STATISTICAL REPRESENTATION MEASURES OF CENTRAL TENDENCY PART 2

OBJECTIVES

The objectives of the lecture are to learn about:

- Review Lecture 24
- Statistical Representation
- Measures of Central Tendency

Part 2
GRAPHING NUMERICAL DATA: THE HISTOGRAM
When frequency is plotted in the form of bars or columns for each class interval a Histogram is obtained as shown below. The data is ordered in array form and frequency is counted for each class interval as explained under lecture 24.

GRAPHING NUMERICAL
 DATA: THE HISTOGRAM

Data in ordered array
12, 13, 17, 21, 24, 24, 26, 27, 27, 30, 32, 35, 37, 38, 41, 43, 44,

Class Midpoints

MEASURES OF CENTRAL TENDENCY

Measures of central tendency can be summarized as under:

- Arithmetic Mean
- Arithmetic Mean for Grouped Data
- Weighted Mean
- Median
- Median for Grouped Data
- Median for Discrete Data
- Graphic Location of Median
- Quintiles (Quartiles, Deciles, Percentiles)
- Quintiles from Grouped Data
- Quintiles from Discrete Data
- Graphic Location of Quintiles
- Mode
- Mode from Grouped Data
- Mode from Discrete Data
- Empirical Relation Between mean, Median and Mode

As you see it is a long list. However, if you look closely you will find that the main measures are Arithmetic Mean, Median, Mode and Quintiles.
All the above measures are used in different situations to understand the behaviour of data for decision making. It may be interesting to know the average, median or mode salary in an organization before you the company decides to increase the salary level. Comparisons with other companies are also important. The above measures provide a useful summary measure to consolidate large volumes of data. Without such summaries it is not possible to compare large selections of data.
EXCEL has a number of useful functions for calculating different measures of central tendency. Some of these are explained below. You are encouraged to go through EXCEL Help file for detailed descriptions of different functions. For selected functions, the help file has been included in the handouts. The examples are also from the help files.

AVERAGE

Returns the average (arithmetic mean) of the arguments.

Syntax

AVERAGE(number1,number2,...)
Number1, number2, ... are 1 to 30 numeric arguments for which you want the average.

Remarks

- The arguments must either be numbers or be names, arrays, or references that contain numbers.
- If an array or reference argument contains text, logical values, or empty cells, those values are ignored; however, cells with the value zero are included

Example

An example of AVERAGE is shown below. Data was entered in cells A4 to A8. The formula was =AVERAGE(A4:A8). The 11 is shown in cell A10.

AVERAGEA

Calculates the average (arithmetic mean) of the values in the list of arguments. In addition to numbers, text and logical values such as TRUE and FALSE are included in the calculation.

Syntax

AVERAGEA(value1,value2,...)
Value1, value2, ... are 1 to 30 cells, ranges of cells, or values for which you want the average.

Remarks

- The arguments must be numbers, names, arrays, or references.
- Array or reference arguments that contain text evaluate as 0 (zero). Empty text ("") evaluates as 0 (zero). If the calculation must not include text values in the average, use the AVERAGE function.
- Arguments that contain TRUE evaluate as 1; arguments that contain FALSE evaluate as 0 (zero).

Example

	A
1	Data
2	10
3	7
4	9
5	2
6	Not available
7	

Formula

=AVERAGEA(A2:A6)
=AVERAGEA(A2:A5,A7)

Description (Result)

Average of the numbers above, and the text "Not Available". The cell with the text "Not available" is used in the calculation. (5.6)

Average of the numbers above, and the empty cell. (7)

MEDIAN

Returns the median of the given numbers. The median is the number in the middle of a set of numbers; that is, half the numbers have values that are greater than the median, and half have values that are less.

Syntax

MEDIAN(number1,number2,...)
Number1, number2, ... are 1 to 30 numbers for which you want the median.

Remarks

- The arguments should be either numbers or names, arrays, or references that contain numbers. Microsoft Excel examines all the numbers in each reference or array argument.
- If an array or reference argument contains text, logical values, or empty cells, those values are ignored; however, cells with the value zero are included.
- If there is an even number of numbers in the set, then MEDIAN calculates the average of the two numbers in the middle. See the second formula in the example.

Example

The numbers are entered in cells A14 to A19.
In the first formula $=$ MEDIAN $(1,2,3,4,5)$ the actual values are specified. The median as you see is 3 , in the middle.
In the next formula $=\mathrm{MEDIAN}(\mathrm{A} 14: \mathrm{A} 19)$, the entire series was specified. There is no middle value in the middle. Therefore the average of the two values 3 and 4 in the middle was used as the median 3.5.

MODE

Returns the most frequently occurring, or repetitive, value in an array or range of data. Like MEDIAN, MODE is a location measure.

Syntax

MODE(number1, number2,...)
Number1, number2, ... are 1 to 30 arguments for which you want to calculate the mode.
You can also use a single array or a reference to an array instead of arguments separated by commas.

Remarks

- The arguments should be numbers, names, arrays, or references that contain numbers.
- If an array or reference argument contains text, logical values, or empty cells, those values are ignored; however, cells with the value zero are included.
- If the data set contains no duplicate data points, MODE returns the \#N/A error value. In a set of values, the mode is the most frequently occurring value; the median
- is the middle value; and the mean is the average value. No single measure of central tendency provides a complete picture of the data. Suppose data is clustered in three areas, half around a single low value, and half around two large values. Both AVERAGE and MEDIAN may return a value in the relatively empty middle, and MODE may return the dominant low value.

Example

The data was entered in cells A27 to A32. The formula was =MODE(A27:A32). The answer 4 is the most frequently occurring value.

COUNT FUNCTION

Counts the number of cells that contain numbers and also numbers within the list of arguments. Use COUNT to get the number of entries in a number field that's in a range or array of numbers.

Syntax

COUNT(value1,value2,...)
Value1, value2, ... are 1 to 30 arguments that can contain or refer to a variety of different types of data, but only numbers are counted.
Remarks

- \quad Arguments that are numbers, dates, or text representations of numbers are counted; arguments that are error values or text that cannot be translated into numbers are ignored.
- If an argument is an array or reference, only numbers in that array or reference are counted. Empty cells, logical values, text, or error values in the array or reference are ignored. If you need to count logical values, text, or error values, use the COUNTA function.

Example

1
A
2
Data

3	Sales	
4	12/8/2008	
5		
6	19	
7	22.24	
8	TRUE	
	\#DIV/0!	
	Formula	Description (Result)
	$=\mathrm{COUNT}(\mathrm{A} 2: \mathrm{A} 8)$	Counts the number of cells that contain numbers in the list above (3)
	$=\mathrm{COUNT}(\mathrm{A} 5: \mathrm{A} 8)$	Counts the number of cells that contain numbers in the last 4 rows of the list (2)
	$=\mathrm{COUNT}(\mathrm{A} 2: \mathrm{AB}, 2)$	Counts the number of cells that contain numbers in the list, and the value 2 (4)

FREQUENCY

Calculates how often values occur within a range of values, and then returns a vertical array of numbers. For example, use FREQUENCY to count the number of test scores that fall within ranges of scores. Because FREQUENCY returns an array, it must be entered as an array formula.

Syntax

FREQUENCY(data_array,bins_array)

Data_array is an array of or reference to a set of values for which you want to count frequencies. If data_array contains no values, FREQUENCY returns an array of zeros. Bins_array is an array of or reference to intervals into which you want to group the values in data_array. If bins_array contains no values, FREQUENCY returns the number of elements in data_array.

Remarks

- FREQUENCY is entered as an array formula after you select a range of adjacent cells into which you want the returned distribution to appear.
- The number of elements in the returned array is one more than the number of elements in bins_array. The extra element in the returned array returns the count of any values above the highest interval. For example, when counting three ranges of values (intervals) that are entered into three cells, be sure to enter FREQUENCY into four cells for the results. The extra cell returns the number of values in data_array that are greater than the third interval value.
- FREQUENCY ignores blank cells and text.
- Formulas that return arrays must be entered as array formulas.

Example

	A	B
1	Scores	Bins
2	79	70
3	85	79
4	78	89
5	85	
6	50	
7	81	
8	95	
9	88	
10	97	
Formula $=$ FREQUENCY(A2:A10,B2:B5 $)$	Desc Number of equal to 7 Number o 71-79 (2) Number o 80-89 (4) Number o than or eq	ult) than or bin bin ter

Note The formula in the example must be entered as an array formula. After copying the example to a blank worksheet, select the range A13:A16 starting with the formula cell. Press F2, and then press CTRL+SHIFT+ENTER. If the formula is not entered as an array formula, the single result is 1 .

ARITHMETIC MEAN GROUPED DATA

Below is an example of calculating arithmetic mean of grouped data. Here the marks and frequency are given. The class marks are the mid points calculated as average of lower and higher limits. For example, the average of 20 and 24 is 22 . The frequency f is multiplied by the class mark to obtain the total number. In first row the value of fx is 1 x $22=22$. The sum of all $f x$ is 1950 . The total number of observations is 50 . Hence the arithmetic mean is $1950 / 50=39$.

Marks	Frequency	Class Marks	$f X$
$20-24$	1	22	22
$24-29$	4	27	108
$30-34$	8	32	256
$35-39$	11	37	407
$40-44$	15	42	630
$45-49$	9	47	423
$50-54$	2	52	104
TOTAL	50		1950
$n=50 ;$ Sum $(f X)=1950 ;$ Mean $=1950 / 50=39$ Marks			

EXCEL Calculation

The above calculation would be common in business life. Let us see how we can do it using EXCEL.
The basic data of lower limits is entered in cell range A54:A60. The data of higher limit is entered in cells B54:B60. Frequency is given in cell range D54:D60. Class mids were calculated in cells F54:F60. In cell F54 the formula =A54+B54/2 was used to calculate the class mark. This formula was copied in other cells (F55 to F60). The value of fx was calculated in cell H54 using the formula =D54*F54. This formula was copied to other cells H55 to H60. Total frequency was calculated in cell D61 using the formula =SUM(D54:D60). Sum of fx was calculated in cell H61 using the formula $=S U M(H 54: H 60)$. Mean was calculated in cell H62 using the formula =ROUND(H61/D61;0). Watch for the" ;" sign. It may be "," on your computer.

LECTURE 26

STATISTICAL REPRESENTATION MEASURES OF DISPERSION AND SKEWNESS PART 1

OBJECTIVES

The objectives of the lecture are to learn about:

- Review Lecture 25
- Statistical Representation
- Measures of Dispersion and Skewness

FREQUENCY-EXAMPLE

FREQUENCY Function calculates how often values occur within a range of values, and then returns a vertical array of numbers. For details see handout for lecture 25. The syntax is FREQUENCY(data_array,bins_array).

The data was entered in cells A3 to A11. The Bins array which gives the limits 70, 79 and 89 were entered in cells B3 to B5. The Bin array always requires one additional blank cell, B6 in our case.
Cells B 7 to B 10 (one more than the limits) were used for the results. Cell B 7 was used for the formula. First the formula =FREQUENCY(A3:A11;B3:B5) was entered. Then, F2 followed by CTRL+Shift+Enter were pressed to indicate that we are entering an array formula.
The result is given in cells B 7 to B 10 . It means that the frequency is as under:
Less than or equal to 70 : 1
71 to 79: 2
80 to under 89: 4
90 and above: 2

FREQUENCY POLYGONS

Numerical data can be represented in the form of Frequency Polygons after calculation of frequency for each interval. A typical frequency polygon is shown in the slide below.

CUMULATIVE FREQUENCY

Relative frequency can be converted into cumulative frequency by adding the current frequency to the previous total. In the slide below, the first interval has the relative as well as cumulative frequency as 3 . In the next interval the relative frequency was 6 . it was added to the previous value to arrive at 9 as cumulative frequency for interval 20 to 30 . What it really means is that 9 values are equal to or less than 30 . Similarly, the other cumulative frequencies were calculated. The total cumulative frequency 20 is the total number of observations.
Percent Cumulative frequency is calculated by dividing the cumulative frequency by the total number of observations and multiplying by 100 . For the first interval the \% cumulative frequency is $3 / 20^{*} 100=15 \%$. Similarly other values were calculated.

TABULATING NUMERICAL
 DATA:
 CUMULATIVE FREQUENCY
 Data in ordered array

$12,13,17,21,24,24,26,27,27,30,32,3,37,38,41,43,44,46,53,58$

Class	Cumulative Frequency	Cumulative \% Frequancy
$\mathbf{1 0 ~ b u t ~ u n d e r ~ 2 0 ~}$	3	15
20 but under 30	9	45
30 but under 40	14	70
40 but under 50	18	90
50 but under 60	20	100

CUMULATIVE \% POLYGON-OGIVE

From the \% cumulative frequency polygon that starts from the first limit (not mid point as in the case of relative frequency polygons) can be drawn. Such a polygon is called

Ogive. The maximum value in an Ogive is always 100\%. Ogives are determining cumulative frequencies at different values (not limits).

GRAPHING NUMERICAL DATA:

THE OGIVE (CUMULATIVE \% POLYGON)
Data in ordered array
$12,13,17,21,24,24,26,27,27,30,32,35,37,38,41,43,44,46,53,58$

Class Boundaries (Not/Midpoints)

TABULATING AND GRAPHING UNIVARIATE DATA

Univariate data (one variable) can be tabulated in Summary form or in graphical form. Three types of charts, namely, Bar Charts, Pie Charts or Pareto Diagrams can be prepared.

SUMMARY TABLE

A typical Summary Table for an investor's portfolio is given in the slide. The variables such as stocks etc. are the categories. The table shows to amount and percentage.

GRAPHING CATEGORICAL DATA: UNIVARIATE DATA

A typical Summary Table for an investor's portfolio is given in the slide. The variables such as stocks etc. are the categories. The table shows to amount and percentage.

BAR CHART

The data of Investor's portfolio can be shown in the form of Bar Chart as shown below. This chart was prepared using EXCEL Chart Wizard. The Wizard makes it very simple to prepare such graphs. You must practice with the Chart Wizard to prepare different types of graphs.

BAR CHART

(FOR AN INVE STOR'S PORTF OLIO)

PIE CHARTS

Pie Charts are very useful charts to show percentage distribution. These charts are made with the help of Chart Wizard. You may notice how Stocks and bonds stand out.

PIE CHART

(FOR AN INVESTOR'S PORTF OLIO)
Amount investedin Rs.

PARETO DIAGRAMS

A Pareto diagram is a cumulative distribution with the first value as first relative frequency, in this case 42%. The point is drawn in the middle of bar for the first category stocks. Next the category Bonds was added. The total is 71%. Next the savings 15% were added to 71% to obtain cumulative frequency 86%. Adding the 14% for CD gives 100%. Thus, the Pareto diagram gives both relative and cumulative frequency.

PARETO DIAGRAM

CONTINGENCY TABLES

Another form of presentation of data is the contingency table. An example is shown in the slide below. The table shows a comparison of three investors along with their combined total investment.

TABULATING CATEGORICAL DATA: BIVARIATE DATA

 Contingency Table

 Contingency Table}

Investment in Thousands of Rupees

| Trwestment
 Category | huestor A | Inestor B | huestor C | Thal |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Stocks | 46.5 | 55 | 27.5 | 129 |
| Bonds | 32 | 44 | 19 | 95 |
| CD | 15.5 | 20 | 13.5 | 49 |
| Savings | 16 | 28 | 7 | 51 |
| Tatal | 110 | 147 | 67 | 324 |

SIDE BY SIDE CHARTS

The same investor data can be shown in the form of side by side charts where different colours were used to differentiate the investors. This graph is a complete representation of the contingency table.

GRAPHING CATEGORICAL DATA: BIVARIATE DATA

Side by
Side
Chart

GEOMETRIC MEAN

Geometric mean is defined as the root of product of individual values. Typical syntax is as under:
$\mathrm{G}=(\mathrm{x} 1 . \mathrm{x} 2 . \mathrm{x} 3 \ldots . . . \mathrm{xn})^{\wedge} 1 / \mathrm{n}$
Example
Find GM of 130, 140, 160
GM $=\left(130^{*} 140 * 160\right)^{\wedge} 1 / 3$
$=142.8$
HARMONIC MEAN
Harmonic mean is defines as under:
$H M=n /(1 / x 1+1 / x 2+\ldots . .1 / x n)$
$=n / S u m(1 / x i)$

Example

Find HM of 10, 8, 6
$H M=3 /(1 / 10+1 / 8+1 / 6)$
$=7.66$

QUARTILES

Quartiles divide data into 4 equal parts

Syntax

1st Quartile Q1=($\mathrm{n}+1$)/4
2nd Quartile Q2= $2(\mathrm{n}+1) / 4$
3rd Quartile Q3 $=3(n+1) / 4$
Grouped data
Qi= ith Quartile $=1+\mathrm{h} / \mathrm{f}\left[\mathrm{Sum} \mathrm{f} / 4^{*} \mathrm{i}-\mathrm{cf}\right)$
$\mathrm{I}=$ lower boundary
$\mathrm{h}=$ width of Cl
cf = cumulative frequency

DECILES

Deciles divide data into 10 equal parts
Syntax
1st Decile D1=($\mathrm{n}+1$)/10
2nd Decile D2 $=2(n+1) / 10$
9th Deciled D9 $=9(n+1) / 10$
Grouped data
Qi $=$ ith Decile ($\mathrm{i}=1,2, .9$) $=\mathrm{I}+\mathrm{h} / \mathrm{f}[$ Sum f/10*i -cf)
$\mathrm{I}=$ lower boundary
$\mathrm{h}=$ width of Cl
cf = cumulative frequency

PERCENTILES

Percentiles divide data into 100 equal parts
Syntax
1st Percentile P1=(n+1)/100
2nd Decile D2=2($n+1$)/100
99th Deciled D9 $=99(n+1) / 100$
Grouped data
Qi $=$ ith Decile($i=1,2, .9)=I+h / f\left[S u m f / 100^{*} i-c f\right)$
$\mathrm{I}=$ lower boundary
$\mathrm{h}=$ width of Cl
cf = cumulative frequency

EMPIRICAL RELATIONSHIPS

Symmetrical Distribution
mean $=$ median $=$ mode
Positively Skewed Distribution
(Tilted to left)
mean > median $>$ mode
Negatively Skewed Distribution
mode $>$ median $>$ mean
(Tilted to right)
Moderately Skewed and Unimodal Distribution
Mean - Mode $=3($ Mean - Median) Example
mode $=15$, mean $=18$, median $=$?
Median $=1 / 3$ [mode +2 mean]
$=1 / 3[15+2(18)]$
$=[15+36] / 3=51 / 3=17$

MODIFIED MEANS TRIMMED MEAN

Remove all observations below 1st quartile and above $3^{\text {rd }}$ Quartile Winsorized MEAN
Replace each observation below first quartile with value of first quartile Replace each observation above the third quartile with value of $3^{\text {rd }}$ quartile TRIMMED AND WINSORIZED MEAN

Example

Find trimmed and winsorized mean.
9.1, 9.1, 9.2, 9.3, 9.2, 9.2

Array the data
9.1, 9.2, 9.2, 9.2, 9.2, 9.3, 9.9

Q1 $=(6+1) / 4=1.75(2$ nd value $)=9.2$
Q3 $=3(6+1) / 4=5.25\left(6^{\text {th }}\right.$ value $)=9.3$
TM $=(9.2+9.2+9.2+9.2+9.3) / 5=9.22$
$W M=(9.2+9.2+9.2+9.2+9.2+9.3+9.3) / 7$

DISPERSION OF DATA

Definition

The degree to which numerical data tend to spread about an average is called the dispersion of data

TYPES OF MEASURES OF DISPERSION

Absolute measures
Relative measures (coefficients)

DISPERSION OF DATA

Types Of Absolute Measures:

- Range
- Quartile Deviation
- Mean Deviation
- Standard Deviation or Variance

Types Of Relative Measures

- Coefficient of Range
- Coefficient of Quartile Deviation
- Coefficient of Mean Deviation
- Coefficient of Variation

LECTURE 27

STATISTICAL REPRESENTATION
 MEASURES OF DISPERSION AND SKEWNESS
 PART 2

OBJECTIVES

The objectives of the lecture are to learn about:

- Review Lecture 26
- Measures of Dispersion and Skewness

MEASURES OF CENTRAL TENDENCY, VARIATION AND SHAPE FOR A SAMPLE

There are many different measures of central tendency as discussed in the last lecture handout. These include:

- Mean, Median, Mode, Midrange, Quartiles, Midhinge
- Range, Interquartile Range
- Variance, Standard Deviation, Coefficient of Variation
- Right-skewed, Left-skewed, Symmetrical Distributions
- Measures of Central Tendency, Variation and ShapeExploratory Data Analysis
- Five-Number Summary
- Box-and-Whisker Plot
- Proper Descriptive Summarisation
- Exploring Ethical Issues
- Coefficient of Correlation

MEANS

The most common measure of central tendency is the mean. The slide below shows the Mean (Arithmetic), Median, Mode and Geometric mean. Another mean not shown is the Harmonic mean. Each of these has its own significance and application. The mean is the arithmetic mean and represents the overall average. The median divides data in two equal parts. Mode is the most common value. Geometric mean is used in compounding such as investments that are accumulated over a period of time. Harmonic mean is the mean of inverse values. Each has its own utility. The slide shows the formulas for mean and geometric mean.

THE MEAN

The formula for Arithmetic Mean is given in the slide. It is the sum of all values divided by the number. In the case of mean of a sample, the number n is the total sample size.
When the sample data is to be used for estimating the value of mean, then the number is reduced by 1 to improve the estimate. In reality this will be a slight overestimation of the population mean. This is done to avoid errors in estimation based on sample data that may not be truly represented of the population.

The Mean (Arithmetic Average)

The Arithmetic Average of data values:

EXTREME VALUES

An important point to remember is that arithmetic mean is affected by extreme values. In the following slide mean of 5 values $1,3,5,7$ and 9 is 5 . In the second case where the data values are $1,3,6,7$ and 14 , the value 14 is an outlier as it is considerably different from the other values. In this case the mean is 6 . in other words the mean increased by 1 or about 20% due to the outlier. While preparing data for mean, it is important to spot and eliminate outlier

The Mean

The Most Common Measure of Central Tendency
 Affected by Extreme Values (Outliers)

values.

THE MEDIAN

The Median is derived after ordering the array in ascending order. If the number of

The Median

Important Measure of Central
Tendency
In an ordered array, the median is the
"middle" number.
If \mathbf{n} is odd, the median is the middle
number
If \mathbf{n} is even, the median is the average of
the 2 middle numbers
observations is odd, it is the middle value otherwise it is the the average of the the two middle values. It is not affected by extreme values.

The Median

Not Affected by Extreme Values

THE MODE

The mode is the value that occurs most frequently. In the example shown on the slide, 8 is the most frequently occurring value. Hence the mode id 8 . Mode ia also not affected by extreme values.

The Mode

A Measure of Central Tendency
 Value that Occurs Most Often
 Not Affected by Extreme Values
 008080800
 $\begin{array}{llllllllllll}0 & 1 & 2 & 3 & 4 & 6 & 6 & 7 & 8 & 9 & 10 & 11 \\ 12 & 13\end{array}$
 Mode $=8$

An important point about Mode is that there may not be a Mode at all (no value is occurring frequently). There may be more than one mode. The mode can be used for numerical or categorical data. The slide shows two examples where there is no mode or there are two modes.

The Mode

There May Not be a Mode
 There May be Several Modes
 Used for Either Numerical or Categorical Data

0000000
123466

RANGE

Another measure of dispersion of data is the Range. It is the difference between the largest and smallest value. The slides shows an example where the value of range was calculated as 31 .

DISPERSION OF DATA

Range
$R=$ Largest - Smallest Value
Example
Find range:
$31,26,15,43,19,27,22,12,36,33,30,24,20$
Largest value $=43$
Smallest = 12
Range $=43-12=31$

The Range

Measure of Variation Difference

 Between Largest \& SmallestObservations:
Range =
Ignores How Data Are Distributed:

MIDRANGE
Midrange is the average of slimmest and largest value. In other words it is half of a range. Midrange is affected by extreme values as it is based on smallest and largest values

Midrange

A Measure of Central Tendency

Average of Smallest and Largest Observation:
Midrange $=\frac{X_{\text {wapst }}+X_{s \text { millet }}}{2}$

Midrange

Affected by Extreme Value

QUARTILES

Quartiles are not exclusively measures of central tendency. However, they are useful for dividing the data in 4 equal parts. In working out quartiles divide the number of data items by 4 and use it as the position of the first quartile. Multiply by 2 for the second and 3 for the $3^{\text {rd }}$ quartile. Say there are 12 items. Then the position of the first quartile is $12 / 4=3$. Supposing the were 14 values then the first quartile would be in $14 / 4=3.5^{\text {th }}$ position. How do you calculate the value at $3.5^{\text {th }}$ position? Obviously, you take the difference between the $4^{\text {th }}$ and $3^{\text {rd }}$ value and multiply by 0.5 and add it to the 3 rs value. Let the $3^{\text {rd }}$ and $4^{\text {th }}$ values be 5 and 7 . Then the difference is 2 . The $1^{\text {st }}$ quartile is then $5+$ $0.5 \times 2=6$. In a similar fashon you can calculate any value.

Quartiles

Not a measure of central tendency
 Split ordered data into 4 quarters

Datain Ordered Amay: $11 \begin{array}{llllllll}12 & 13 & 16 & 16 & 17 & 18 & 21 & 22\end{array}$
Position of $Q_{\bar{T}} \frac{1(9+1)}{4}=2.50 \quad Q_{1}=12.5$

QUARTILE DEVIATION

Quartile Deviation is the average of $1^{\text {st }}$ and $3^{\text {rd }}$ Quartile.
Q.D = (Q3-Q1)/2

Example

Find Q.D
14, 10, 17, 5, 9, 20, 8, 24, 22, 13
Q1 $=(\mathrm{n}+1) / 4$ th value $=(10+1) / 4=2.75$ th
$=8+0.75(9-8)=8+0.75 \times 1=8.75$
Q3 $=3(2.75)=8.25$ th value
$=8$ th value +0.25 (9th value -8 th value)
$=20+0.25(22-20)=20.50$
Q.D $=(20.50-8.75) / 2=5.875$

BOX AND WHISKER PLOTS

Box and Whisker plots show the 5 number summary:

- Smallest value
- $\quad 1^{\text {st }}$ Quartile (Q1)
- Median(Q2)
- $\quad 3^{\text {rd }}$ Quartile (Q3)
- Largest value

The plots give a good idea about the shape of the distribution as detailed below. Box and whisker plots for symmetrical, left skewed and right skewed distributions are shown belo.

Exploratory Data Analysis

```
            Box-and-whisker:
    Graphical display of data using 5-number
            summary
```


Distribution Shape \&

Box-anc-whisker Plots

Data is perfectly symmetrical if:
Distance from Q1 to Median = Distance from Median to Q3
Distance from Xsmallest to Q1 = Distance from Q3 to Xlargest
Median $=$ Midhinge $=$ Midrange
Right-skewed distribution
Median < Midhinge < MidrangeDistance from Xlargest to Q3 greatly exceeds distance from Q1 to Xsmallest
Left-skewed distribution
Median > Midhinge > MidrangeDistance from Q1 to Xsmallest greatly exceeds distance from Xlargest to Q3

SUMMARY MEASURES

The slide shows summary of measures of central tendency and variation. In variation there are range, Interquartile range, standard deviation, variance, and coefficient of variation. The measures of central tendency have been discussed already

Summary Measures

MEASURES OF VARIATION

In measures of variation, there are the sample and population standards deviation and variance the most important measures. The coefficient of variation is the ratio of standard deviation to the mean in \%.

Measures of Variation

INTERQUARTILE RANGE
Interquartile range is the difference between the ist and $3^{\text {rd }}$ quartile.

Interquartile Range
 Measure of Variation
 Also Known as Midspread: Spread in the Middle 50\% Difference Between Third \& First
 Quartiles: Interquartile Range=
 Data in Ordered Array: $\begin{array}{lllllllll}11 & 12 & 13 & 16 & 16 & 17 & 17 & 18 & 21\end{array}$
 $Q_{3}-Q_{1}=17.5-12.5=5$
 Not Affected by Extreme Values

LECTURE 28

MEASURES OF DISPERSION
CORRELATION
PART 1

OBJECTIVES

The objectives of the lecture are to learn about:

- Review Lecture 27
- Measures of Dispersion
- Correlation

MODULE 6

Module 6 covers the following:
Correlation
(Lecture 28-29)
Line Fitting
(Lectures 30-31)
Time Series and Exponential Smoothing
(Lectures 32-33)

VARIANCE

Variance is the one of the most important measures of dispersion. Variance gives the average square of deviations from the mean. In the case of the population, the

Variance

Important Measure of V ariation

Shows Variation About the Mean:

For the Population: $\sigma^{2}=\frac{\sum(X-\mu)^{2}}{N}$
For the Sample: $\quad s^{2}=\frac{\sum\left(X_{l}-\bar{X}\right)^{2}}{n-1}$
For the Population: use \mathbf{N} For the Sample : use n in the denominator. $\quad \mathbf{1}$ in the denominator.
sum of square of deviations is divided by N the number of values in the population. In the case of variance for the sample the number of observations less 1 is used.

STANDARD DEVIATION

Standard deviation is the most important and widely used measure of dispersion. The square root of square of deviations divided by the number of values for the population and number of observations less 1 gives the standard deviation.

Standard Deviation

```
Most Important Measure of Variation
Shows Variation About the Mean
Same unit of measurement as the observations
For the Population: \(\quad \sigma-\sqrt{\frac{\sum(X-\mu)}{N}}\)
For the Sample
\(s=\sqrt{\frac{\Sigma\left(X_{1}-\bar{X}\right)}{n-1}}\)
For the Population: use \(N\) For the Sample: usen in the denominator. - 1 in the denominator
```


COMPARING STANDARD DEVIATIONS

In many situations it becomes necessary to calculate population standard deviation (SD) on the basis of SD of the sample where $n-1$ is used for
*. Comparing Standard

Deviations
 $\begin{array}{lllllll}10 & 12 & 14 & 15 & 17 & 18 & 18\end{array}$

Data :
24

$$
\begin{aligned}
& \mathrm{N}=\mathbf{8} \quad \text { Mean=16 } \\
& s=\sqrt{\frac{\sum\left(X_{i}-\bar{X}\right)^{2}}{n-1}}=4.2426 \\
& \sigma=\sqrt{\frac{\sum\left(X_{i}-\mu\right)^{2}}{N}}=3.9686
\end{aligned}
$$

Value for the Standard Deviation is larger for data considered as a Sample.
division. In the slide the same data is first treated as the sample and the value of SD is 4.2426. When we treat it as the population the SD is 3.9686 , which is slightly less than the SD for the sample. You can see how the sample SD will be overestimated if used for the population.

COMPARING STANDARD DEVIATIONS

The slide shows three sets of data A, B and C. All the three datasets have the same mean 15.5 but different standard deviations ($\mathrm{A}: \mathrm{s}=3.338$; B : $\mathrm{s}=0.9258$ and $\mathrm{C}: \mathrm{s}=4.57$). It is clear that SD is an important measure to understand how different sets of data differ from each other. Mean and SD together form a complete description of the central tendency of data.

Comparing Standard Deviations

Data A

	ata										
O	O	0				8	O	\%			
	12	13	14	415			17	18	19	2	

$$
\begin{gathered}
\text { Mean }=15.5 \\
\mathrm{~s}=3.338
\end{gathered}
$$

$$
\begin{gathered}
\text { Mean }=15.5 \\
s=.9258
\end{gathered}
$$

Data C

COEFFICIENT OF VARIATION

Comparing Coefficient of
 Variation

```
-Stock A: average price last year = Rs. }5
- Standard deviation = Rs. }
-CV}-(\frac{\mp@subsup{S}{}{-}}{X})\cdot100% age price last year = Rs. 100
    ;tandard deviation = Rs. }
```


Coefficient of

 Variation:Stock A: CV = 10\%
Stock B: CV = 5\%

Coefficient of variation (CV) shows the dispersion of the standard deviation about the mean. In the slide you see two stocks A and B with $C V=10 \%$ and 5% respectively. This comparison shows that in the case of stock A there was a much greater variation in price with reference to the mean.

MEAN DEVIATION ABOUT MEAN

Other useful measures are Deviation about the Mean and median. The formulas for normal or grouped data are as follows:
Mean Deviation About Mean - Normal data
MD (mean) = Sum (xi- mean)/n
For Grouped data - Grouped data
MD (mean) = Sum fi (xi - mean)/Sum fi
Mean Deviation About Median - Normal data
MD (median) = Sum (xi-median)/n
Mean Deviation About Median - Grouped data
MD (median) = Sum fi (xi-median)/Sum fi

CORRELATION

In regression Analysis, we shall encounter different types of regression models. One of the main functions of regression analysis is determining the simple linear regression equation. What are the different Measures of variation in regression and correlation? What are the Assumptions of regression and correlation? What is Residual analysis? How do we make
Inferences about the slope? How can you estimate predicted values? What are the Pitfalls in regression? What are the ethical issues?
Correlation is measuring the strength of the association.
An important point in regression analysis is the purpose of the analysis.

SCATTER DIAGRAM

The first step in regression analysis is to plot the values of the dependent and independent variable in the form of a scatter diagram as shown below. The form of the scatter of the points indicates whether there is any degree of association between them.
In the scatter diagram below you can see that there seems to be a fairly distinct correlation between the two variables. It appears as if the points were located around a straight line.
Once the degree of association is established, it makes sense to proceed further and carry out regression analysis using a regression model.

The Scatter Diagram

Plot of all $\left(X_{i}, Y_{i}\right)$ pairs

Types of Regression Models

There are two types of linear regression models as shown in the slide below. These are positive and negative linear relationships. In the positive relationship, the value of the dependent variable increases as the value of the independent variable increases. In the case of negative linear relationship, the value of the dependent variable decreases with increase in the value of independent variable.

Types of Regression Models

Positive Linear Relationship Hegative Linear Relationship

LECTURE 29

MEASURES OF DISPERSION
 CORRELATION
 PART 2

OBJECTIVES

The objectives of the lecture are to learn about:

- Review Lecture 28
- Correlation

CORRELATION

When do we use correlation?

It will be used when we wish to establish whether there is a degree of association between two variables. If this association is established, then it makes sense to proceed further with regression analysis. Regression analysis determines the constants of the regression. You can not make any predictions with results of correlation analysis. Predictions are based on regression equations.

CORRELATION

When do we use correlation? Do use it to determine the strength of association betw een two variables Do not use it if you want to predict the value of X given Y, or vice versa

SIMPLE LINEAR CORRELATION VERSUS SIMPLE LINEAR REGRESSION

The calculations for linear correlation analysis and regression analysis are the same. In correlation analysis, one must sample randomly both X and Y . Correlation deals with the association (importance) between variables whereas Regression deals with prediction (intensity).
The slide shows three types of correlation for both positive and negative linear relationships. In the first figure ($r=\quad .0 .9$), the data points are practically in a straight line. This kind of association or correlation is near perfect. This applies to negative correlation also.
The graphs where $r=0.5$, the points are more scattered, there is a clear association but this association is not very pronounced.
In graphs where $r=0$, there is no association between variables.

TYPICAL CORRELATION

y Vs x

CORRELATION COEFFICIENT

For calculation of correlation coefficient:

1. A standardised transform of the covariance (sxy) is calculated by dividing it by the product of the standard deviations of X (sx) \& Y (sy).
2. It is called the population correlation coefficient is defined as:

$$
\text { - } r=s_{X Y} / s_{X} s_{Y}
$$

Properties

1. For the population:
$-1=r=+1$
2. $r=0$ means no linear relationship
$r=-1$ perfect negative relationship
$r=+1$ perfect positive relationship

Important points about Correlation

- $\quad r$ always lies between -1 and 1
- $\quad r^{\wedge} 2$ is the coefficient of determination, which measures the proportion of the variance in X1 (or X2) "explained" by variation in X2 or X1
- $\quad r$ always lies between -1 and 1 .

Strength of association

- It measures the strength of the association between $X \& Y$ on a scale from -1 , through 0 , up to +1 .
- This gives an intuitive feel for how strong the association is, regardless of the original units of $X \& Y$.
- \quad Near +1 or -1 means very strong.
- Near 0 means very weak.

Warning

- Existence of a high correlation does not mean there is causation, which means that there may be a correlation but it does not make things happen because of that.
- There can exist spurious correlations. And correlations can arise because of the action of a third unmeasured or unknown variable. In many situations correlation
can be high without any solid foundation.

MEASURING THE STRENGTH OF A CORRELATION

Test statistic is the product-moment correlation coefficient r $r=$ covariance (x, y)
$s(x) . s(y)$
covariance $(x, y)=s u m[(x-x m)(y-y m)] / n$
$s(x)=\left[\left\{\operatorname{sum}\left(x^{\wedge} 2\right) / n\right\}-\left(x m^{\wedge} 2\right)\right]^{\wedge} 1 / 2$
$s(y)=\left[\left\{\operatorname{sum}\left(y^{\wedge} 2\right) / n-\right\}\left(y m^{\wedge} 2\right)\right]^{\wedge} 1 / 2$

EXCEL Tools

- For summary of sample statistics, use:

Tools / Data Analysis / Descriptive Statistics

- For individual sample statistics, use:

Insert / Function / Statistical
and select the function you need

EXCEL Functions

- In EXCEL, use the CORREL function to calculate correlations
- The correlation coefficient is also given on the output from TOOLS, DATA ANALYSIS, CORRELATION or REGRESSION

Scatter Diagram Two Variables

You can develop a scatter diagram using EXCEL chart wizard.

The slide shows a scatter diagram of Advertisement and Sales over the years. The graph was made using EXCEL chart Wizard. As you can see one cannot draw any conclusions about the degree of association between advertising from this graph.

SALES VERSUS ADVERTISEMENT

The scatter diagram for sale versus advertisement shows a fairly high degree of association. The relationship appears to be positive and linear.

CORRELATION COEFFICIENT USING EXCEL

Correlation Coefficient for correlation between two steams of data was calculated using the formula $\operatorname{Cov}(x, y) / S x$.Sy as given above.
The data for variable x was entered in cells A67 to A71. Data for variable y was entered in cells B67 to B71.Calculations for square of x, square of y, product of x and $y, X m, Y m$ and $\operatorname{cov}(x, y)$ were made in columns C, D, E, F and G respectively. Other calculations were made as follows:

Cell A72: Sum of x (=SUM(A67:A71)
Cell B72: Sum of y (=SUM(B67:B71)
Cell C72: Sum of square of $x(=S U M(C 67: C 71)$
Cell D72: Sum of square of y (=SUM(D67:D71)
Cell E72: Sum of product of x and y (=SUM(E67:E71)
Cell F72: Mean of $x(=A 72 / 5)$, where 5 is the number of observations
Cell G72: Mean of y (=B72/5), where 5 is the number of observations
Cell F73: Sx (=SQRT(C72/5-F72*F72))
Cell G73: Sy =(SQRT(D72/5-G72*G72))
Cell H73: $\operatorname{Cov}(x, y)$ (=E72/5-F72*G72)
Cell H74: Correlation coefficient (=H73/(F73*G73))
The above formulas are in line with formulas described earlier.

-
CORREL
Returns the correlation coefficient of the array1 and array2 cell ranges. Use the correlation coefficient to determine the relationship between two properties. For example, you can examine the relationship between a location's average temperature and the use of air conditioners.

Syntax

CORREL(array1, array2)
Array1 is a cell range of values.
Array2 is a second cell range of values.

Remarks

- The arguments must be numbers, or they must be names, arrays, or references that contain numbers.
- If an array or reference argument contains text, logical values, or empty cells, those values are ignored; however, cells with the value zero are included.
- If array1 and array2 have a different number of data points, CORREL returns the \#N/A error value.
- If either array1 or array2 is empty, or if s (the standard deviation) of their values equals zero, CORREL returns the \#DIV/0! error value.
- The equation for the correlation coefficient is:
- The equation for the correlation coefficient is:

$$
o_{s, g}=\frac{\operatorname{Cov}(X, Y)}{\sigma_{s} \cdot \sigma_{y}}
$$

where:
$-1 \leq o_{\mathrm{cr}} \leq 1$
and:
$\operatorname{Cov}(X, Y)=\frac{1}{n} \sum_{j=1}^{n}\left(x_{i}-\mu_{y}\right)\left(y_{j}-\mu_{y}\right)$
EXCEL Calculation
The X and Y arrays are in cells A79 to A83 and B79 to B83 respectively. The formula for correlation coefficient was entered in cell D84 as $=\operatorname{CORRE}(A 79: A 83 ; B 79: B 83)$. The value or $r(0.8)$ is shown in cell C86.

\boxtimes^{3} Microsoft Excel - Lecture_29							
樯 Eile Edit view Insert Format Iools Data window Help							
口 sum $-\times v f_{x}=\operatorname{CORREL}(A 79: A 83 ; B 79: 883)$							
	A	B	C	D	E	F	c
75							
76	CORREL(array1,array2)						
77							
78	X	\mathbf{Y}					
79	2	60					
80	5	100					
81	4	70					
82	6	90					
83	3	80					
84	20	400	$\mathrm{r}=$	=CORREL(A79:A83;			
85							
\| 86			0.8				

SAMPLE CORRELATION

The unknown value of \mathbf{r} is estimated by the sample coefficient.

Sample Correlation

The unknown value of r is estimated by
the sample coefficient: $r=\mathbf{s}_{1 /} / \mathbf{s}_{1} \mathbf{s}_{\mathrm{y}}$

$$
r=\frac{\mathrm{SS}_{x y}}{\sqrt{\mathrm{SS}_{x} \mathrm{SS}_{y}}}
$$

EASY CALCULATION FORMULA

A simplified formula for the variance is given in the following slide.

Easy calculation formula

- For calculation, don't use the previous (definition) formula, but instead make a column of values of the squares of X then use the mean

$$
s^{2}=\frac{1}{n-1}\left\lceil\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2}\right\rceil
$$

STANDARD DEVIATION

In practice the numerical statistic used to describe the "spread" of a sample is the square root of the variance which is called the "standard deviation".

- $\mathbf{s}=\mathbf{s}^{\wedge 1 / 2}$ (for populations: $\mathbf{s}=\mathbf{s}^{\wedge 1 / 2}$)
- we say : "s" estimates "s"
- If "range" = (max. value - min. value) then
$\mathrm{s}=$ (range/4) approximately

Rules of thumb

- If the data are reasonably symmetric, and cluster near the mean:

- About 70\% of observations are included in an interval 1 standard deviation (s.d) either side of the mean about 95%..................... 2 s.d.'s......... about 99.7\%.......................................

Population Parameters

- Sample -->>(estimates) population
- Statistic " " parameter
- $\quad \mathrm{x}$
- $\mathrm{s}^{\wedge} 2 \quad$ " $\mathrm{s}^{\wedge 2}$
- s " s " Rel.freq.polygon" prob.distribution

LECTURE 30

Measures of Dispersion
LINE FITTING
PART 1

OBJECTIVES

The objectives of the lecture are to learn about:

- Review Lecture 29
- Line Fitting

EXCEL SUMMARY OF SAMPLE STATISTICS

For summary of sample statistics, use:
Tools > Data Analysis > Descriptive Statistics
For individual sample statistics, use:
Insert > Function > Statistical
and select the function you need
EXCEL STATISTICAL ANALYSIS TOOL
You can use EXCEL to perform a statistical analysis:

- On the Tools menu, click Data Analysis. If Data Analysis is not available, load the Analysis ToolPak.
- In the Data Analysis dialog box, click the name of the analysis tool you want to use, and then click OK.
- In the dialog box for the tool you selected, set the analysis options you want.
- You can use the Help button on the dialog box to get more information about the options.

LOAD THE ANALYSIS TOOLPAK

You can load the EXCEL Analysis ToolPak as follows:

On the Tools menu, click Add-Ins.
In the Add-Ins available list, select the Analysis ToolPak box, and then click OK.
If necessary, follow the instructions in the setup program

Data Analysis

SLOPE

Returns the slope of the linear regression line through data points in known_y's and known_x's. The slope is the vertical distance divided by the horisontal distance between any two points on the line, which is the rate of change along the regression line.

Syntax

SLOPE(known_y's,known_x's)
Known_y's is an array or cell range of numeric dependent data points.
Known_x's is the set of independent data points.

Remarks

- The arguments must be numbers or names, arrays, or references that contain numbers.
- If an array or reference argument contains text, logical values, or empty cells, those values are ignored; however, cells with the value zero are included.
- If known_y's and known_x's are empty or have a different number of data points, SLOPE returns the \#N/A error value.
- \quad The equation for the slope of the regression line is:

$$
b=\frac{n \sum x y-\left(\sum x\right)\left(\sum y\right)}{n \sum x^{2}-\left(\sum x\right)^{2}}
$$

Example

The known y-values and x-values were entered in cells $A 4$ to $A 10$ and $B 4$ to B10 respectively. The formula $=\operatorname{SLOPE}(A 4: A 10 ; B 4: B 10)$ was entered in cell $A 11$. The result 0.305556 is the value of slope in cell B12.

W Mir rosff trel－Lecture 30				
		Window Help （10）Σ－雨 $\mathrm{z}+1$ 10）	(⿴囗才) 》 \|Arial	
		${ }^{\text {c }}$（ ${ }^{\text {c }}$	E	
2 SLOPE（kn	own＿y＇s，kn	nown＿x＇s）		
Known y	Known x			
2	26			
3	5			
9	11			
1	7			
8	5			
7	7			
10.5	4.			
${ }_{11}=$ SLOPE（				
${ }^{12}$ A4：A10；	0.305556			
B4：B10）	0．305556			

INTERCEPT

Calculates the point at which a line will intersect the y－axis by using existing x－values and y－values．The intercept point is based on a best－fit regression line plotted through the known x－values and known y－values．Use the INTERCEPT function when you want to determine the value of the dependent variable when the independent variable is 0 （zero）． For example，you can use the INTERCEPT function to predict a metal＇s electrical resistance at $0^{\circ} \mathrm{C}$ when your data points were taken at room temperature and higher．

Syntax

INTERCEPT（known＿y＇s，known＿x＇s）

Known＿y＇s is the dependent set of observations or data．
Known＿x＇s is the independent set of observations or data．

Remarks

－The arguments should be either numbers or names，arrays，or references that contain numbers．
－If an array or reference argument contains text，logical values，or empty cells， those values are ignored；however，cells with the value zero are included．
－If known＿y＇s and known＿x＇s contain a different number of data points or contain no data points，INTERCEPT returns the \＃N／A error value．
－\quad The equation for the intercept of the regression line is：

$$
a=\bar{Y}-b \bar{X}
$$

where the slope is calculated as：

$$
b=\frac{n \sum x y-(\Sigma x)\left(\sum y\right)}{n \sum x^{2}-\left(\sum x\right)^{2}}
$$

Example

The data for y－values was entered in cells A18 to A22．
The data for x－values was entered in cells B 18 to B 22 ．
The formula $=$ INTERCEPT（A18：A22；B18：B22）was entered in cell A24．
The answer 0.048387 is shown in cell B 25 ．

LECTURE 31
 LINE FITTING
 PART 2

OBJECTIVES

The objectives of the lecture are to learn about:

- Review Lecture 30
- Line Fitting

Types of Regression Models

There are different types of regression models. The simplest is the Simple Linear Regression Model or a relationship between variables that can be represented by a straight line equation.
To determine whether a linear relationship exists, a Scatter Diagram is developed first.

The Scatter Diagram

Plot of all $\left(X_{i}, Y_{i}\right)$ pairs

In linear regression two types of models are considered. The first one is the Population Linear Regression that represents the linear relationship between the variables of the entire population (i.e. all the data). It is quite customary to carry out sample surveys and determine linear relationship between two variables on the basis of sample data. Such regression analysis is called Sample Linear Regression.

Types of Regression Models

Relationship HOT Linear

No Relationship

Relationship between Variables is described by a Linear Function. The change of one variable causes the other variable to change. The relationship describes the dependency of one variable on the other. The population dependent variable is Yi. The regression equation for Yi is shown in the slide along with explanations. The first and second terms give the population regression line. The third term is the random error.

Population Linear Regression

Population Regression Line Is A Straight Line that Describes The Dependence of The Average Value of One Variable on The Other

The slide below shows the graphical representation of the population regression equation. It may be seen that the distance of the points from the regression line (obtained by inserting values of X in the equation) is the random error. The intercept is shown on the Y -axis.

Population Linear Regression

(cortinued)

The slide below shows the regression equation for the sample. Note that the intercept in this case has a notation b0. The slope is b1. The random error is e1. Different notations are used to distinguish between population regression and sample regression.

Sample Linear Regression

Sample Regression Line Provides an Estimate
of The Population Regression Line as well as
a Predicted Value of Y
Sample
Y Intercept

Sample
Slope
Cofficient

b_{1} provides an estimate of β_{0}

REGRESSION EQUATION

The formula for the regression equation is as under:
Equation of Least Squares Regression line
$y-y m=(r . s(y) / s(x)) .(x-x m)$

Example

Based on analysis of data the following values have been worked out:
xm = 4;
ym = 80;
$s(x)=2^{\wedge} 1 / 2 ;$
$s(y)=200^{\wedge} 1 / 2$;
$r=0.8$
Find the regression equation $Y=a+b . X$
Using the formula given above:
$y-y m=(r . s(y) / s(x)) .(x-x m)$
$y-80=\frac{0.8 \cdot 200^{\wedge} 1 / 2}{2^{\wedge 1 / 2}} \cdot(x-4)$
$y-80=8(x-4)$
$y=8 x-32+80$
$y=8 x+48$

REGRESSION EXAMPLE 1

Regression Analysis can be carried out easily using EXCEL Regression Tool. Let us see how it can be done. We chose to carry out regression on data given in the slide below. Y-values are $60,100,70,90$ and 80 . X-values are 2, 5, 4, 6 and 3.
区 Microsoft Excel-Lecture_31

圏 Eile Edit Weew Insert Format Iools Data Window Help

D51 - ft			
	A	B	c
37	REGRESSION ANALYSIS		
38	EXAMPLE 1		
39			
40	Y	X	
41	60	2	
42	100	5	
43	70	4	
44	90	6	
45	80	3	
46			

We start the regression analysis by going to the Tools menu and selecting the Data Analysis menu as shown below.

The Regression dialog box opens as shown in the following slide. You click the Regression analysis tool and then OK.

The regression dialog box opens as shown below. In this dialog box, Input range for X and Y is required. One can specify labels, confidence level and output etc.

For the sample data the input Y range was selected by clicking in the text box for input y range data first and then selecting the Y range (A85:A89). The regression tool adds the $\$$ sign in front of the column and row number to fix its location. The input range for X was specified in a similar fashion. No labels were chosen. The default value of 95% confidence interval was accepted. The output range was also selected in an arbitrary fashion. All you need to do is to select a range of cells for the output tables and the graphs. The range A91:F124 was selected as output range by selecting cell A91 and then dragging the mouse in such a manner that the last cell selected on the right was F124.

The Regression dialog box with data is shown below for clarity.

Regression		$?$	
Input		OK	
Input Y Range:			
保		Cancel	
Input X Range:			
Γ Labels	Γ Constant is Zero	Help	
Γ Confidence Level:	95%		
Output options			
- Output Range:	\|\$A\$91:\$F\$124	暃:	
\bigcirc New Worksheet Ply:			
C New Workbook			
Residuals			
V Residuals	$\sqrt{\text { R Line Fit Plots }}$		
Normal Probability Normal Probability Plots			

When you click OK on the Regression tool box a detailed SUMMARY OUTPUT is generated by the Regression Tool. This output is shown in parts below.

SUMMARY OUTPUT

Regression Statistics	
Multiple R	0.8
R Square	0.64
Adjusted R Square	0.52
Standard Error	10.954512
Observations	5

ANOVA

	df		SS	
Regression	1	640	64	
Residual	3	360	12	
Total	4		1000	
	Coefficients Standard Error	t Stat		
Intercept	48	14.69693846	3.2659	
X Variable 1	8	3.464101615	2.309	

XWicomet licel Lectures 31				
57				
${ }_{58}$ F Significance F				
${ }_{59} 5.33330 .104088039$				
${ }^{6}$				
61				
62				
${ }_{63}{ }_{\text {P }}$-value Lower 95\% Upper 95\%Lower 95.0\%Upper 95.0\%				
${ }_{64} 0.0469$	1.227738632	94.77226	1.22773863	94.7722614
${ }_{65} 0.1041$	-3.024327728	19.02433	-3.0243277	19.0243277

Y Microsoft Excel - Lecture_31 - -				
娄 Ele Edit Yew Insert Format Iools Data Window Hep			Type aquestion for hep	
	A	B	c	D
68 . ${ }_{6}$				
69 RESIDUAL OUTPUT				
70				
71	Observation	Predicted Y	Residuals	
72	1	64	-4	
73	2	88	12	
74	3	80	-10	
75	4	96	-6	
76	5	72	8	8
77				

The regression Tool also generates a normal probability plot and Line Fit Plot.

EXCEL REGRESSION TOOL OUTPUT

In the regression Tool output there are a number of outputs for detailed analysis including Analysis of Variance (ANOVA) that is not part of this course. The main points of our interest for simple linear regression are:

Multiple R

Correlation Coefficient

R Square

Coefficient of determination

STEM-Standard Error of mean:

Standard deviation of population/sample size
T-Statistic
= (sample slope - population slope) / Standard error

RSQ

There is a separate function RSQ in EXCEL to calculate the coefficient of determination square of r. Description of this function is as follows:
Returns the square of the Pearson product moment correlation coefficient through data points in known_y's and known_x's. For more information, see PEARSON. The rsquared value can be interpreted as the proportion of the variance in y attributable to the variance in x .

Syntax

RSQ(known_y's,known_x's)
Known_y's is an array or range of data points.
Known_x's is an array or range of data points.

Remarks

- The arguments must be either numbers or names, arrays, or references that contain numbers.
- If an array or reference argument contains text, logical values, or empty cells, those values are ignored; however, cells with the value zero are included.
- If known_y's and known_x's are empty or have a different number of data points, RSQ returns the \#N/A error value.
- The equation for the r value of the regression line is:
$r=\frac{n(\Sigma X Y)-(\Sigma X)\left(\sum Y\right)}{\sqrt{\left[n \Sigma Y^{2}-\left(\sum X\right)^{2}\right]\left[n \Sigma Y^{2}-(\Sigma Y)^{2}\right]}}$

Example

	A	B
1	Known y	Known x
2	2	6
3	3	5
4	9	11
5	1	7
6	8	5
7	7	4
8	5	4
	FRSQ(A2:A8,B2:B8)	Description (Result)

P-VALUE

In the EXCEL regression Tool, the P-Value is defined as under:
P-value is the Probability of not getting a sample slope as high as the calculated value.
Smaller the value more significant the result. In our example
P-value $=0.000133$.
It means that slope is very significantly different from zero.

Conclusion

X and y are strongly associated

SAMPLING DISTRIBUTION IN r

It is possible to construct a sampling distribution for r similar to those for sampling distributions for means and percentages.
Tables at the end of books give minimum values of r (ignoring sign) for a given sample size to demonstrate a significant non-zero correlation at various significance levels (0.1, $0.05,0.02,0.01$ and 0.001) and degrees of freedom (1 to 100).
It is to be noted that $v=$ degrees of freedom $=n-2$ in all these calculations.

SAMPLING DISTRIBUTION IN r-EXAMPLE1

Look at a sample size $n=5$.
Null hypothesis: $\mathrm{r}=0$.
Calculated coefficient $=0.8$.
Test the significance at 5% confidence level.

Solution:

Look in the table at row with $\mathrm{v}=3$ and column headed by 0.05 .
You will find the Tabulated value $=0.8783$.
Sample value of 0.8 is less than 0.8783 .

Conclusion

Correlation is not significantly different from zero at 5\% level.
Variables are not strongly associated.

SAMPLING DISTRIBUTION IN r-EXAMPLE 2

Look at a smple size $\mathrm{n}=5$.
Null hypothesis: $\mathrm{r}=0$
Calculated coefficient $=-0.95$
Test the significance at 5% confidence level.

Solution:

Look at row with $v=3$ and column headed by 0.05 .
Tabulated value $=0.8783$.
Sample value of 0.95 (ignoring sign) is greater than 0.8783

Conclusion

Correlation is significantly different from zero at 5\% level.
Variables are strongly associated.

LECTURE 32
 TIME SERIES AND
 EXPONENTIAL SMOOTHING
 PART 1

OBJECTIVES

The objectives of the lecture are to learn about:

- Review Lecture 31
- Time Series and Exponential Smoothing

SIMPLE LINEAR REGRESSION EQUATION. EXAMPLE

The slide below shows the data from 7 stores covering square ft and annual sales. The question is whether there is a relationship between the area and the sale for these stores. It is required to find the regression equation that best fits the data.

Simple Linear Regression Equation: Example

	Store	Square Feet	$\begin{aligned} & \text { Annual } \\ & \text { Sales } \\ & \text { Rs. }(000) \end{aligned}$
	1	1,726	3,681
You wish to examine the	2	1,542	3,395
relationship between the	3	2,816	6,653
square footage of produce stores and their anmual	4	5,555	9,543
sales. Sample data for 7	5	1,292	3,318
stores were obtained. Find	6	2,208	5,563
the equation of the straight	7	1,313	3,760
line that fits the data best			

First of all a scatter diagram is prepared using EXCEL Chart Wizard as shown below. The points on the scatter diagram clearly show a positive linear relationship between the annual sale and the area of store. It means that it will make sense to proceed further with regression analysis.

Scatter Diagram Example

Excel Output

Using the EXCEL Regression Tool, the regression equation was derived as given below.

Equation for Sample Regression Line

$$
\begin{aligned}
Y_{i} & =b_{0}+b_{1} X_{i} \\
& =1636.415+1.487 X_{i}
\end{aligned}
$$

FromFxcel Printount

	Coefficients
Intercept	1636.414726
X Variable	1.486633657

The graph of the regression line was prepared using the regression Tool. The result shows the data points, regression line and text showing the equation. As you see, it is possible to carry out linear regression very easily using Excel's Regression Tool.

Graph of the Sample Regression Line

Interpreting the Results

The slide below gives the main points, namely, that for every increase of 1 sq . ft . there is a sale of 1.487 units or 1407 Rs. As each unit was equal to 1,000 . Now that the equation has been developed, we can estimate sale of stores of other sizes using this equation.

Interpreting the Results

$$
\stackrel{\AA}{Y}_{i}=1636.415+1.487 X_{i}
$$

The slope of 1.487 means that each increase of one wit in X, we predict the arerage of Y to increase by an estimsted 1.487 unis.

The modelestimrtes thrt for each increase of 1 square foot in the size of the store, the expected sumulisales are predicted to increase by Rs. 1487

Interpreting the Results

$$
\stackrel{\hat{Y}}{i}=1636.415+1.487 X_{i}
$$

> The slope of 1.487 means that each increase of one wit in X, we predict the ayerage of Y to increase by in estimated 1.487 umis.

The modelestimxtes thrt for each increase of 1 spuare foot \boldsymbol{i}^{\prime} the size of the store, the expected sumulsales are predicted to increase by Rs. 1487

CHART WIZARD

Let us look at how we can use the Chart Wizard. We wish to study the problem shown in the slide below.

SALES RECORDS BROKEN DOWN BY QUARTERS ${ }_{2}$ Year Quarter No.Sold (000)

You can start with the Chart Icon as shown on the right.
There are 4 steps in using the Chart wizard as shown below:

Step 1

Step 2

Step 3

Chart Wizard - Step 3 of 4 - Chart Options

Step 4

The dialog boxes are self-explanatory. Let us look at the example above and see how Chart wizard was used.
First the data was selected on the worksheet. Next the Chart Wizard was selected.
We chose Column Graph as the option as you can see in the slide below.
We clicked Next.

You can see the selection of Column graph in the slide below.

Under Step 2, the Chart Title, Category (X) axis and value (Y) were entered as shown in the slide. Then the button Next was clicked.

Under the $4^{\text {th }}$ step, the default values Chart1 and Sheet1 were selected. Then the button Finish was clicked.

The result is shown below as a column graph.

EXAMINATION OF GRAPH TREND

The graph shows that there is a general upward or downward steady behaviour of figures. There are Seasonal Variations also. These are variations which repeat themselves regularly over short term, less than a year. There is also a random effect that is variations due to unpredictable situations. There are cyclical variations which appear as alternation of upward and downward movement.

EXTRACTING THE TREND FROM DATA

Look at the following data:
$170,140,230,176,152,233,182,161,242$
There is no explanation regarding time periods. What to do?

First step

Plot figures on graph
Horizontal as period 1
Vertical as period 2

Conclusion

There is a marked pattern that repeats itself.
There is a well established method to extract trend with strong repeating pattern

MOVING AVERAGES

Look at the data in the slide below. There is sales data for morning, afternoon and evening for day 1, 2 and 3 . We can calculate averages for each day as shown. These are simple averages for each day.

Now let us look at the idea of moving averages.
First Average- Day 1
$=(170+140+230) / 3=540 / 3=180$

Next Average-Morning

$=(140+230+176) / 3=546 / 3=182$

Next Average-Afternoon

$=(230+176+152) / 3=186$

Another method

Drop 170; Add 176; $=(176-170) / 3=6 / 3=2$
Last average $+2=180+2=182$

Caution

You may make a mistake
You saw how it is possible to start with the first 3 values 170, 140 and 230 for the first day and work out the average (180). Next we dropped 170 and added 152 the morning value from day 2 . This gave us an average of 182 . Similarly, the next value was calculated. Look at the worksheet below for the complete calculation. These averages are called moving averages. You could have used the alternative method but you may make a mistake in mental arithmetic. So let us only use EXCEL worksheets.

The moving averages were plotted as shown below. You can see that the seasonal variation has disappeared. Instead you see a clear trend of increase in sales. This plot shows that moving averages can be used for forecasting purposes.

ANALYSING SEASONAL VARIATIONS

Let us find out how much each period differs from trend
Calculate Actual - trend for each period

Day 1, Afternoon

Actual $=180$, Trend $=140$
Actual - Trend $=140-180=-40$
Here, -40 is the seasonal variation.
Similarly, other seasonal variations can be worked out.

LECTURE 33
 TIME SERIES AND EXPONENTIAL SMOOTHING
 PART 2

OBJECTIVES

The objectives of the lecture are to learn about:

- Review Lecture 32
- Time Series and Exponential Smoothing.

TREND

As discussed briefly in the handout for lecture 32, the trend is given by the moving average minus the actual data. Look at the slide shown below. The average of the morning, afternoon and evening of the first day is 180 . This value is written in cell I179, which is the middle value for first day. The next moving average is written in cell I180. This means that the last moving average will be written in cell l185 as the moving average of the morning, afternoon and evening of $3^{\text {rd }}$ day will be written against the middle value in cell F185.
Now that all the moving averages have been worked out we can calculate the trend as difference of moving average and actual value.

The actual trend figures are now written as shown in the slide below with M for morning, A for afternoon and E for evening. The titles Day 1, day 2 and Day 3 were written on the left hand side of the table. Further Total for each column was calculated. The total was divided by the non-zero values in the column. For example, in column M, there are 2 non-zero values. Hence, the total 20 was divided by 2 to obtain the average -10 . Similarly, the averages in column A and E were calculated. This data is the seasonal variation and can now be used for estimating trend and random variations.

EXTRACTING RANDOM VARIATIONS

Day 1

Afternoon trend $=180$
Afternoon seasonal variation $=36$
Trend - variation $=180-36=144$
Actual value $=140$
Random variation $=140-144=-4$

Conclusion

Expected $=$ Trend + Seasonal
Random = Actual - expected

```
$ Microsoft Excel - Lecture_32 - 0 B
    * File Edit Yiew Insert Format Iools Data WMindow Help Type aquestion for help * - 0
```



```
    |
\mp@subsup{}{20}{23}\mathrm{ ACTUAL }
2x (trend + seasonal) 144 228 176 151 235 182 159
27 Random
2x(actual-expected) 
Forecast for day 4
=
Trend for afternoon of day 4
+
Seasonal adjustment for afternoon period
Trend = 180 to 195 (6 intervals)
= 15/6 = 2.5 per period
Figure for evening of day 3=195 + 2.5 = 197.5
Morning of day 4=197.5+2.5=200
Afternoon of day 4 = 200 + 2.5 = 202.5
After adjustment of seasonal variation =-36
= 202.5-36 = 166.5 or 166
```


SEASONABLE VARIATIONS

Seasonal Variations are regarded as constant amount added to or subtracted from the trends. This is a reasonable assumption as seasonal peaks and troughs are roughly of constant size. In practice Seasonal variations will not be constant. These will themselves vary as trend increases or decreases. Peaks and troughs can become less pronounced Seasonal variations as well as the trend are shown in the graph below. You can see that the trend clearly shows a downward slide in values.

In the following slide，the actual values are for 4 quarters per year．Here there is no middle value per year．The moving averages were therefore summarised against the $3^{\text {rd }}$ quarter．As this does not reflect the correct position，the average of the first two moving averages was calculated and written as centred moving average in column H ．The first centred moving average is the average of 141 and 138 or 139.5 ．This is used as the trend and the value Actual－Trend is the difference of Actual－Centred Moving Average． Here also the last row does not have a value as the moving average was shifted one position upwards．

§ Microsoft Excel－Lecture＿33	回

	Eile Esdit	Yiew	ert Format	Tools	Data Window					Type a question	for	
	运回家	㟺品	旨－	－	－Σ－兄畐	教 \downarrow 峴	（3）${ }^{\text {\％}}$	B $\underline{\text { U }}$	是	€ ${ }_{\text {．}}^{0} 0$		
	M65	\checkmark	${ }_{\text {f }}$									
	B	c	D	E	F	G	H	1	J	K	L	M
58												
59			TREN	D	ND S	AS	ONAL	VAR		ONS		
60	Quar	rter	Actua		Movi		Cent	ed		Actua		
61					Aver		M：Av	rag		trend		
62	1	，	142									
63	2	2	54									
64	3		162		141		139.5			22.5		
65	4	4	206		138		137.5			68.5		
66	1		130		137		138.5			－8．5		
67	2	2	50		140		139.0			－89．0		
68	3		174		138		137.5			36.5		
69	4	4	198		137		136.0			62.0		
70	1		126		135		133.5			－7．5		
71	2	2	42		132		130.5			－88．5		
72	3		162		129							

The data from the previous slide was summarised as in the following slide using the approach described earlier．It may be seen that the average seasonal variation for Spring，Summer，Autumn and Winter is $-8,-88.8,29.5$ and 65.3 respectively．

The expected value now is the sum of centred moving average and random
区 Microsoft Excel－Lecture＿33

	Edit	Eat yem Insern	Format Iot	Data window			Typeaquestion	－
	回	量为龟限	里•为。		119 ？${ }^{\text {P }} 10$		€ 500	
	104	${ }_{*}$						
	B	c	D	E	F	G	H	1 －
87				COMPLE	E TABL			
88	Qtr	Actual	Moving	Centred	Actual－	Expected	Random	
89			Average	M：Average	trend			
90		1142						
91		254				＝E92＋H85	＝C92－G92	
92		3162	141	139.5	22.5	169.5		＝C92－G9
93		4206	138	137.5	68.5	203.5	2.5	
94		1130	137	138.5	－8．5	130.5	－0．5	
95		250	140	139.0	－89．0	50.0	0.0	
96		3174	138	137.5	36.5	167.5	6.5	
97		4198	137	136.0	62.0	202.0	－4．0	
98		1126	135	133.5	－7．5	125.5	0.5	
99		242	132	130.5	－88．5	43	－1．0	
100		3162	129					
101		4186						

variation．The random variation is the difference between the Actual and Expected value． This gives us a complete table with all the values．The values in this table were plotted using the EXCEL Chart Wizard as shown below．You can see that the different components can now be seen clearly．

COMPLETE TABLE FOR VARIATIONS

FORECASTING APPLE PIE SALES

Forecast

Sale steadily declined from 139.0 to 130.5.
Over 4 quarters, the sales declined by $=139.0-130.5=8.5$
Trend in Spring 1995 was 133.5.
We can assume annual decrease as on the basis of decline over the last 4 quarters $=8.5$
Trend in $1996=$ trend in 1995 less decline $=133.5-8.5=125$
Seasonal variation as already worked out $=-8$

Hence:

Final forecast $=125-8=117$

FORECASTING IN UNPREDICTABLE SITUATIONS

Two methods were studied above. Each one has certain features. If there is steady increase in data and repeated seasonal variations, there are many cases that do not conform to these patterns. There may not be a trend. There may not be a short term pattern. Figures may hover around an average mark. How to forecast under such conditions?
Data for sales over a period of 8 weeks is summarized and plotted in the slide below. You may see that the values hover around an average value without any particular pattern. This problem requires a different solution.

Let us assume that the forecast for week 2 is the same as the actual data for week 1 , that is 4500 .

Week no.	Actual sales	Forecast
1	4500	-
2	4000	4500

The Actual sale was 4000 . Thus, the Forecast is 500 too high.
Another approach would be to incorporate the proportion of error in the estimate as follows:
new forecast $=$ old forecast $\boldsymbol{+}$ proportion of error α
Or
new forecast $=$ old forecast $+\alpha \times$ (old actual - old forecast)
This method is called Exponential Smoothing. We shall learn more about this method in lecture 34.

LECTURE 34

FACTORIALS

PERMUTATIONS AND COMBINATIONS

OBJECTIVES

The objectives of the lecture are to learn about:

- Review Lecture 33
- Factorials
- Permutations and Combinations

Module 7

Module 7 covers the following:
Factorials
Permutations and Combinations
(Lecture 34)
Elementary Probability
(Lectures 35-36)
Chi-Square
(Lectures 37)
Binomial Distribution
(Lectures 38)

FORECAST

Please refer to the Example discussed in Handout 33.
Let $\alpha=0.3$
Then:
Forecast week $3=$ week 2 forecast $+\alpha \times$ (week 2 actual sale - week 2 forecast)
$=4500-0.3 \times 500=4350$

Conclusion

Overestimate is reduced by 30% of the error margin 500.
The slide below shows the calculation for normal error as well as alpha x error. You can see that the error is considerably reduced using this approach.

B			F	6	${ }^{\text {H }}$	
${ }_{162}$ Week No.	Sales	Forecast		Error	alpha x	
1631	4500					
1642	4000	4500		-500	-150	
${ }^{165}$	3800	4350		-550	-165	
168	4600	4185		415	124.5	
1675	4600	4309.5		290.5	87.2	
1886	4200	4396.7		-196.7	-59	
1697	3600	4337.7		-737.7	-221.3	
1708	4100	4116.4		-16.4	-4.91	
$171 \quad 9$						
${ }_{12}$ Forecast =E164+H164			Error=	164-E164		
${ }_{173}$ ErrorAlpha	$\mathrm{a}=0.3$					

The forecast is now calculated by adding alpha x Error to the actual sales. The error is the difference between the actual sales and the forecast. The first value is the same as the sale last week. Use of alpha $=0.3$ is considered very common. This method is called Exponential Smoothing and alpha is Smoothing Constant.

Rule for obtaining a forecast:

Let $A=$ Actual and $F=$ Forecast.
Then:
$\mathrm{F}(\mathrm{t})=\mathrm{F}(\mathrm{t}-1)+\alpha(\mathrm{A}(\mathrm{t}-1)-\mathrm{F}(\mathrm{t}-1))$
$=\alpha \mathrm{A}(\mathrm{t}-1)+(1-\alpha) \mathrm{F}(\mathrm{t}-1)$
$\mathrm{F}(\mathrm{t}-1)=\alpha \mathrm{A}(\mathrm{t}-2)+(1-\alpha) \mathrm{F}(\mathrm{t}-2)$
Substituting
$\mathrm{F} 3=\alpha \mathrm{A}(\mathrm{t}-1)+(1-\alpha)[\alpha \mathrm{A}(\mathrm{t}-2)+(1-\alpha) \mathrm{F}(\mathrm{t}-2)]$
$=\alpha[A(t-1)+(1-\alpha) A(t-2)]+(1-\alpha)^{\wedge} 2 F(t-2)$
Replacing $\mathrm{F}(\mathrm{t}-2)$ by a $(\mathrm{t}-3)+(1-\alpha) \mathrm{F}(\mathrm{t}-3)$
$\mathrm{F}(\mathrm{t})=\alpha\left[\mathrm{A}(\mathrm{t}-1)+(1-\alpha) \mathrm{A}(\mathrm{t}-2)+(1-\alpha)^{\wedge} 2 \mathrm{~A}(\mathrm{t}-3)\right]+$
(1- α) $\mathrm{F}(\mathrm{t}-3)$

WHERE TO APPLY EXPONENTIAL SMOOTHING

What kinds of situations require the application of Exponential Smoothing?
What are good values of α ?
The accepted Criterion is Mean Square Error (MSE).
You can find MSE for by squaring all and including the present one and dividing by the number of periods included.
Sign of good forecast is when MSE stabilizes.
Generally alpha between 0.1 and 0.3 performs best.

Example

The slide below shows the calculation of MSE. Detailed formulas can be seen in the Worksheet for Lecture 34.

EXPONENTIAL SMOOTHING TOOL

It is possible to use the Exponential Smoothing Tool included in the EXCEL Tools.

Different items in the Dialog Box are described below:
Input Range
Enter the cell reference for the range of data you want to analyze. The range must contain a single column or row with four or more cells of data.
Damping factor
Enter the damping factor you want to use as the exponential smoothing constant. The damping factor is a corrective factor that minimizes the instability of data collected across a population. The default damping factor is 0.3 .
Note Values of 0.2 to 0.3 are reasonable smoothing constants. These values indicate that the current forecast should be adjusted 20 to 30 percent for error in the prior forecast. Larger constants yield a faster response but can produce erratic projections. Smaller constants can result in long lags for forecast values Labels
Select if the first row and column of your input range contain labels. Clear this check box if your input range has no labels; Microsoft Excel generates appropriate data labels for the output table.
Output Range
Enter the reference for the upper-left cell of the output table. If you select the Standard Errors check box, Excel generates a two-column output table with
standard error values in the right column. If there are insufficient historical values to project a forecast or calculate a standard error, Excel returns the \#N/A error value.
Note The output range must be on the same worksheet as the data used in the input range. For this reason, the New Worksheet Ply and New Workbook options are unavailable.
Chart Output
Select to generate an embedded chart for the actual and forecast values in the output table.

Standard Errors

Select if you want to include a column that contains standard error values in the output table. Clear if you want a single-column output table without standard error values.

Example

Use of the Exponential Smoothing Tool is shown in the following slides. First the Exponential Tool was selected.
囚 Microsoft Excel - Lecture_33 - 『

Next the Input and Output Range were specified. Labels, Chart Output and Standard Errors were ticked as options in check boxes.
4 Microsoft Excel - Lecture_33
图 File Edit Yiew Insert Format Iools Data Window Help

| E 206 | f | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C | D | E | F | G | H |

185 EXPONENTIAL SMOOTHING USING EXCEL WIZARD

186	2200			
187	2400	Exponential Smoothing		?
188	2600	Input Input Range: $\$$ C $\$ 186: \$ C \$ 191$ Damping factor: ∇ Labels		OK
189	2800			Cancel
190	3000			Help
191	3400	Output options Output Range: $\$ D \$ 186: \$ \mathrm{D} \$ 191$ 		
192				
193		New Worksheet Ply: \square		
194		New Workbook		
195				
196		\sqrt{V} Chart Output	$\sqrt{\square}$ Standard Errors	
197				

198
199
The output along with standard graphs is shown on the following slide.

FACTORIAL

Let us look at natural numbers.
Natural Numbers
1, 2, 3,...
Let us now define a factorial of natural numbers, say factorial of 5 .
Five Factorial
$5!=5.4 .3 .2 .1$ or 1.2.3.4.5
Similarly factorial of 10 is:
Ten Factorial
$=1.2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9.10=10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$
In general
$\mathrm{n}!=\mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2) . .3 \cdot 2 \cdot 1$ or
$n!=n(n-1)(n-2)!$
$=n(n-1)$!
FACTORIAL EXAMPLES
$10!=10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=3,628,800$
$8!/ 5!=8.7 .6 .5!=8.7 .6=336$
$12!/ 9!=12.11 .10 .9!/ 9!=12.11 .10=1320$
$10!8!/ 9!5!=10.9!8.7 .6 .5!/ 9!5!=$
10.8.7.6 $=3360$

WAYS
If operation A can be performed in m ways and B in n ways, then the two operations can be performed together in m.n ways.

Example

A coin can be tossed in 2 ways. A die can be thrown in 6 ways. A coin and a die together can be thrown in $2.6=12$ ways

PERMUTATIONS

An arrangement of all or some of a set of objects in a definite order is called permutation.

Example 1

There are 4 objects A, B, C and D
Permutations of 2 objects $A \& B: A B, B A$
Permutations in three objects A, B and C :
$A B C, A C B, B C A, B A C, C A B, C B A$

Example 2

Number of permutations of 3 objects taken 2 at a time $=3 \mathrm{P} 2$
$=3!/(3-2)!=3.2=6$
= AB, BA, AC, CA, BC, CB
Number of permutations of n objects taken r at a time $=$
$n P r=n!/(n-r)!$
PERMUTATIONS OF n OBJECTS
Number of n permutations of n different objects taken n at a time is n ! $n P n=n(n-1)(n-2) . .3 .2 .1$
Number of permutations of n objects of which $n 1$ are alike of one kind, $n 2$ are alike of one kind and nk are alike.
N!/n1!n2!...nk1

Example 3

How many possible permutations can be formed from the word STATISTICS?
$S=3, A=1, T=3, I=2, C=1$

Formula

nPr = n!/n1!n2!..nk!
$=10!/ 3!1!3!2!1!=10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4.3!/ 3!3!2!$
$=50400$

PERMUT

EXCEL function PERMUT can be used to calculate number of permutations.

Returns the number of permutations for a given number of objects that can be selected from number objects. A permutation is any set or subset of objects or events where internal order is significant. Permutations are different from combinations, for which the internal order is not significant. Use this function for lottery-style probability calculations.
Syntax
PERMUT(number,number_chosen)
Number is an integer that describes the number of objects.
Number_chosen is an integer that describes the number of objects in each permutation.

Remarks

- Both arguments are truncated to integers.
- If number or number_chosen is nonnumeric, PERMUT returns the \#VALUE! error value.
- If number ≤ 0 or if number_chosen < 0 , PERMUT returns the \#NUM! error value.
- If number < number_chosen, PERMUT returns the \#NUM! error value.
- The equation for the number of permutations is:

$$
P_{k, x}=\frac{n!}{(n-k)!}
$$

Example

Suppose you want to calculate the odds of selecting a winning lottery number. Each lottery number contains three numbers, each of which can be between 0 (zero) and 99, inclusive. The following function calculates the number of possible permutations:

LECTURE 35
 COMBINATIONS
 ELEMENTARY PROBABILITY
 PART 1

OBJECTIVES

The objectives of the lecture are to learn about:

- Review Lecture 34
- Combinations
- Elementary Probability

COMBINATIONS

Arrangements of objects without caring for the order in which they are arranged are called Combinations.
Number of n objects taken r at a time, denoted by $n C r$ or (n) given by
(r)
$n C r=n!/ r!(n-r)!$

Example

Number of combinations of 3 different objects A, B, C taken two at a time
$=3!/ 2!(3-2)!=6 / 2=3$.
These combinations are: AB, AC, and BC .

COMBINATIONS EXAMPLES

Here are a few examples of combinations which are based on the above formula.

Example 1

$4 \mathrm{C} 2=4!/ 2!(4-2)!=4.3 .2 / 2 \cdot 2=6$
Example 2
$5 \mathrm{C} 2=5!/ 2!(5-2)!=5.4 .3!/ 2.3!=10$

Example 3

In how many ways a team of 11 players be chosen from a total of 15 players?
$\mathrm{n}=15, \mathrm{r}=11$
$15 \mathrm{C} 11=15!/ 11!(15-11)!=15.14 .13 .12 .11!/ 11!4$! $=15.7 .13$ = 1365 ways

Example 4

There are 5 white balls and 4 black balls. In how many ways can we select 3 white and 2 black balls?
$5 \mathrm{C} 3 \times 4 \mathrm{C} 2=5!/ 3!(5-3) \cdot 4!/ 2!(4-2)!=10.6=60$

RESULTS OF SOME COMBINATIONS

Here are some important combinations that can simplify the process of calculations for Binomial Expansion.

1. $\mathrm{nC0}=\mathrm{nCn}=1$
e.g., $4 C 0=4 C 4=1$
2. $\mathrm{nC} 1=\mathrm{nCn}-1=\mathrm{n}$
e.g., 4C1 $=4 C 3=4$
3. $n C r=n C n-r$
4. e.g., $5 \mathrm{C} 2=5 \mathrm{C} 3$

BINOMIAL EXPANSION

An expression consisting of two terms joined by + or - sign is called a Binomial Expression. Expressions such as $(a+b),(a-b),(x+y)^{\wedge} 2$ are examples of Binomial Expressions
We can verify that:
$(x+y)^{\wedge} 1=x+y$
$(x+y)^{\wedge} 2=x^{\wedge} 2+2 x y+y^{\wedge} 2$
$(x+y)^{\wedge} 3=x^{\wedge} 3+3 x^{\wedge} 2 y+3 x y^{\wedge} 2+y^{\wedge} 3$
$(x+y)^{\wedge} 4=x^{\wedge} 4+4 x^{\wedge} 3 y+6 x^{\wedge} 2 y^{\wedge} 2+4 x y^{\wedge} 3+y^{\wedge} 4$
Expressions on the right hand side are called Binomial Expansions.

COEFFICIENTS OF BINOMIAL EXPANSION

The coefficients of the binomial expansion for any binomial expression can be written in combinatorial notation:
$(x+y)^{\wedge} 5=5 C 0 . x^{\wedge} 5+5 C 1 x^{\wedge} 4 y+5 C 2 x^{\wedge} 3 y^{\wedge} 2+5 C 3 x^{\wedge} 2 y^{\wedge} 3+5 C 4 x y^{\wedge} 4+5 C 5 y^{\wedge} 5$

Solving:

$=x^{\wedge} 5+5 x^{\wedge} 4 y+10 x^{\wedge} 3 y^{\wedge} 2+10 x^{\wedge} 2 y^{\wedge} 3+5 x y^{\wedge} 4+y^{\wedge} 5$

CALCULATION OF BINOMIAL EXPANSION COEFFICIENTS

Coefficient of first and last term is always 1
Coefficient of any other term = (coefficient of previous term). (power of x from previous term)/number of that term

Example

First term $=x^{\wedge} 5$
Last term $=y^{\wedge} 5$
Second coefficient $=5 / 1=8$
Third coefficient $=5 * 4 / 2=10$
Fourth coefficient $=10 * 3 / 3=10$
Fifth coefficient $=10 * 2 / 4=5$

PROJECT DEVELOPMENT MANAGER'S PROBLEM

A toys manufacturer intends to start development of new product lines. A new toy is to be developed. Development of this toy is tied with a new TV series with the same name. There is 40% chance of TV series. The production in such a case is estimated at 12,000 units. The Profit per toy would be Rs. 2.
Without TV series-sale there may be demand for 2,000 units.
Already 500,000 Rs. has been invested.
A rival may bring to the market a similar toy. If so the sale may be 8000 units. The chance of rival bringing this toy to the market is 50%.

Choices:

The company has two choices:

- Abandon new product
\bullet Risk new development
How should the company tie it all to financial results?

PROBABILITY EXAMPLE 1

How can we make assessment of chances? Look at a simple example.
A worker out of 600 gets a prize by lottery.
What is the chance of any one individual say Rashid being selected?

Solution:

Chance of any one individual say Rashid being selected $=1 / 600$
The probability of the event "Rashid is selected" is the probability of an event occurring= $p($ Rashid $=1 / 600)$
This is a' priori method of finding probability as we can assess the probability before the event occurred

PROBABILITY EXAMPLE 2

When all outcomes are equally likely a' priori probability is defined as:
$p($ event $)=$ Number of ways that event can occur/Total number of possible outcomes If out of 600 persons 250 are women, then the chance of a women being selected $=$ $p($ woman $)=250 / 600$

PROBABILITY - EMPIRICAL APPROACH

In many situations, there is no prior knowledge to calculate probabilities.
What is the probability of a machine being defective?

Method:

1. Monitor the machine over a period of time.
2. Find out how many times it becomes defective.

This experimental or empirical approach

EXPERIMENTAL AND THEORETICAL PROBABILITY

$p($ event) = Number of times event occurs/Total number of experiments.
Larger the number of experiments, more accurate the estimate.
Experimental probability approaches theoretical probability as the number of experiments becomes very large.

OR RULE

Consider two events A and B .
What is the probability of either A or B happening?
What is the probability of A and B happening?
What is the number of possibilities?
Probability of A or B happening $=$ Number of ways A or B can happen/ Total number of possibilities
= Number of ways A can happen + number of ways B can happen/ Total number of possibilities
Or
$=$ Number of ways A can happen/ Total number of possibilities + Number of ways B can happen/ Total number of possibilities
$=$ Probability of A happening + Probability of B happening

Condition for Or Rule

A and B must be mutually exclusive.
When A and B are mutually exclusive:
$p(A$ or $B)=p(A)+p(B)$
OR RULE EXAMPLE
If a dice is thrown what is the chance of getting an even number or a number divisible
by three?
p(even) $=3 / 6$
p(div by 3) $=2 / 6$
$p($ even or div by 3$)=3 / 6+2 / 6=5 / 6$
The number 6 is not mutually exclusive.
Hence:
Correct answer $=4 / 6$

AND RULE

Probability of A and B happening $=$ Probability of $A \times$ Probability of B

Example

In a factory 40% workforce are women. Twenty five percent females are in management grade. Thirty percent males are in management grade. What is the probability that a worker selected is a women from management grade?

Solution

$p($ woman chosen $)=2 / 5$
25% females = management grade
30% of males = management grade
$\mathrm{p}($ woman \& Management grade $)=\mathrm{p}($ woman $) \times \mathrm{p}$ (management $)$
Assume that the total workforce $=100$
$p($ woman $)=0.4$
$p($ management $)=0.25$
$p($ woman $) \times p($ management $)=0.4 \times 0.25=0.1$ or 10%
SET OF MUTUALLY EXCLUSIVE EVENTS
To cover all possibilities between mutually exclusive events add up all the probabilities.
Probabilities of all these events together add up to 1.
$p(A)+p(B)+p(C)+\ldots p(N)=1$

EXHAUSTIVE EVENTS

A happens or A does not happen then A and B are Exhaustive Events.
$p(A$ happens $)+A$ (does not happen $)=1$

Example 1

$p($ you pass $)=0.9$
$p($ you fail $)=1-0.9=0.1$

EXAMPLE1 - EXHAUSTIVE EVENTS

A production line uses 3 machines. The Chance that $1^{\text {st }}$ machine breaks down in any week is $1 / 10$. The Chance for $2^{\text {nd }}$ machine is $1 / 20$. Chance of $3^{\text {rd }}$ machine is $1 / 40$. What is the chance that at least one machine breaks down in any week?

Solution

$\mathrm{p}($ at least one not working $)+\mathrm{p}($ all three working $)=1$
p (at least one not working) $=1-p($ all three working $)$
$p($ all three working $)=p(1$ st working $) \times p(2 n d$ working $) \times p(3$ rd working $)$
$p(1$ st working $)=1-p(1$ st not working $)=1-1 / 10=9 / 10$
$p(2$ nd working $)=19 / 20$
$p(3$ rd working $)=39 / 40$
p (all working) $9 / 10 \times 19 / 20 \times 39 / 40=6669 / 8000$
$p($ at least 1 working $)=1-6669 / 8000=1331 / 8000$

APPLICATION OF RULES

A firm has the following rules:
When a worker comes late there is $1 / 4$ chance that he is caught.
First time he is given a warning.
Second time he is dismissed.
What is the probability that a worker is late three times is not dismissed?

Solution

Let us use the denominations:
1C: Probability of being Caught first time
1NC: Probability of being Not Caught first time
2C: Probability of being Caught 2nd time
2NC: Probability of being Not Caught 2nd time
3C: Probability of being Caught 3rd time

3NC: Probability of being Not Caught $3^{\text {rd }}$ time
Probabilities of different events can be calculated by applying the AND Rule.
$1 C(1 / 4) \& 2 C(1 / 4)$ (Dismissed 1) $=(1 / 16=4 / 64)$
$1 \mathrm{C}(1 / 4) \& 2 N C(3 / 4) \& 3 C(1 / 4)(D i s m i s s e d 2)(3 / 64)$
1C(1/4) \& 2NC(3/4) \& 3NC(3/4)(Not dismissed 1)(9/64)
1NC(3/4) \& 2C(1/4) \& 3C(1/4)(Dismissed 3)(3/64)
1NC(3/4) \& 2C(1/4) \& 3NC(3/4)(Not dismissed 2)(9/64)
$1 N C(3 / 4) \& 2 N C(3 / 4) \& 3 C(1 / 4)(N o t ~ d i s m i s s e d ~ 3)(9 / 64)$
$1 N C(3 / 4) \& 2 N C(3 / 4) \& 3 N C(3 / 4)(N o t ~ d i s m i s s e d ~ 4)(27 / 64)$
p (caught first time but not the second or third time) $=1 / 4 \times 3 / 4 \times 3 / 4=9 / 64$
p (caught only on second occasion) $=3 / 4 \times 1 / 4 \times 3 / 4=9 / 64$
$p($ late three times but not dismissed $)=p($ not dismissed 1$)+p($ not dismissed 2$)+$ $p($ not dismissed 3$)+p($ not dismissed 4$)=9 / 64+9 / 64+9 / 64+27 / 64=54 / 64$
p(caught) using OR Rule
p(caught) =
$p($ dismissed 1$)+p($ dismissed 2$)+p($ dismissed 3$)=4 / 64+3 / 64+3 / 64$
= 10/64
p(caught) and p(not caught) using rule about Exhaustive events
p (not caught) $=1-p$ (not caught)
= $1-10 / 64$
$=54 / 64$

LECTURE 36

ELEMENTARY PROBABILITY

PART 2

OBJECTIVES

The objectives of the lecture are to learn about:

- Review Lecture 35
- Elementary Probability

PROBABILITY CONCEPTS REVIEW

Most of the material on probability theory along with examples was included in the handout for lecture 35 . You are advised to refer to handout 35 . Some of the concepts and examples have been further elaborated in this handout.
Probability means making assessment of chances. The simplest example was the probability of Rashid getting the lottery when he was one of 600 . The probability of the event was $1 / 600$.

PERMUT EXAMPLE

In handout for lecture 35, we looked at the function PERMUT, that can be used for calculations of permutations. An example is shown in the slide

OR RULE REVIEW

When two events are mutually exclusive, the probability of either one of those occurring is the sum of individual probabilities. This is the OR Rule. This is a very extensively used rule.
A and B must be mutually exclusive. The formula for the $O R$ rule is as under.
$p(A$ or $B)=p(A)+p(B)$

Example

If a dice is thrown what is the chance of getting an odd number or a number divisble by two?
$P($ odd $)=3 / 6$
$p($ div by 3$)=2 / 6$
$p($ odd or div by 3) $=3 / 6+2 / 6=5 / 6$
The number 6 is not mutually exclusive
Hence correct answer $=4 / 6$
AND RULE REVIEW
The AND Rule requires that the events occur simultaneously.

Example

60\% workforce are men.
$p($ man chosen $)=3 / 5$
25% females $=$ management grade
30% of males = management grade
What is the probability that a worker selected is a man from management grade?

Example

$p($ man \& management grade $)=p($ man $) \times p($ management $)$
Total workforce $=100$
$p(m a n)=0.6$
$p($ management $)=0.3$
$p($ man $) \times p($ management $)=0.6 \times 0.3=0.18$ or 18%
SET OF MUTUALLY EXCLUSIVE EVENTS REVIEW
Between them they cover all possibilities.Probabilities of all these events together add up to 1. Exhaustive Events are events that happen or do not happen.
p (it rains) $=0.9$
p (it does not rain) $=1-0.9=0.1$

Example

In Handout for lecture 35 we studied the problem of the three machines.
A production line uses 3 machines.
Chance that $1^{\text {st }}$ machine breaks down in any week was $1 / 10$. Chance for $2^{\text {nd }}$ machine was $1 / 20$. Chance of $3^{\text {rd }}$ machine was $1 / 40$. What is the chance that at least one machine breaks down in any week?
What are the probabilities?
Probability that one or two or three machines are not working (in other words at least one not working) and that all three areworking add up to 1 as exhaustive events.
$\mathrm{P}($ at least one not working $)+\mathrm{p}($ all three working $)=1$
From the above, the probability that at least one is not working is worked out.
$\mathrm{P}($ at least one not working $)=1-\mathrm{p}($ all three working $)$
Now to work out the probability that all three are working, we need to think in terms of machine 1 and machine 2 and machine 3 working. This means application of the AND Rule.
$\mathrm{p}($ all three working $)=\mathrm{p}(1$ st working $) \times \mathrm{p}(2$ nd working $) \times \mathrm{p}$ (3rd working) Now the probability of machine 1 working is not known. The probability that machine 1 is not working is given. These two events (working and not working) are exhaustive events and add up to 1 . Thus, the event that machine 1 is working, p (1st working), can be calculated as:
$=1-\mathrm{p}(1$ st not working $)=1-1 / 10=9 / 10$
The calculations for the other machines are:
$\mathrm{p}(2$ nd working $)=1-1 / 20=19 / 20$
$\mathrm{p}(3 \mathrm{rd}$ working $)=1-1 / 40=39 / 40$
Now the combined probability of p (all working) is a product of their individual probabilities using the AND Rule:
$=9 / 10 \times 19 / 20 \times 39 / 40=6669 / 8000$
Finally $P($ at least 1 working or $)=1-6669 / 8000=1331 / 8000$

LECTURE 37

PATTERNS OF PROBABILITY: BINOMIAL, POISSON AND NORMAL DISTRIBUTIONS
 PART 1

OBJECTIVES

The objectives of the lecture are to learn about:

- Review Lecture 36
- Patterns of Probability: Binomial, Poisson and Normal Distributions

MODULE 7

Module 7 covers the following:
Factorials
Permutations and Combinations
(Lecture 34)
Elementary Probability
(Lectures 35-36)
Patterns of probability: Binomial, Poisson and Normal Distributions
Part 1-4
(Lectures 37-40)

MODULE 8

Module 8 covers the following.
Estimating from Samples: Inference
(Lectures 41-42)
Hypothesis Testing: Chi-Square Distribution (Lectures 43-44)
Planning Production Levels: Linear Programming (Lecture 45)
Assignment Module 7-8
End-Term Examination

EXAMPLE 1

We covered in the past two lectures Elementary Probability. Most of the material was included in Handout 35. Some questions were discussed in detail in handout 36. In lecture 37, the example where the employee was warned on coming late and dismissed if late twice will be discussed. The material for this example is given in handout 35 . Here we shall cover the main points and the method.
A firm has the following rules:
When a worker comes late there is $1 / 4$ chance that he is caught First time he is given a warning. Second time he is dismissed.
What is the probability that a worker is late three times is not dismissed?

Solution

How do we solve a problem of this nature? The answer is to develop the different options first. Let us see how it can be done.

First time

There are two options:
Caught: 1C
Not Caught: 1NC
2nd time
Caught: 2C
Not Caught: 2NC
$3^{\text {rd }}$ time
Caught: 3C
Not Caught: 3NC

Look at combinations up to $2^{\text {nd }}$ stage

$1 C>2 C$
$1 \mathrm{C}>2 \mathrm{NC}$
1NC>2C
1NC>2NC
Look at combinations up to $3^{\text {rd }}$ stage
1C \& 2C
1 C \& 2NC \& 3C
$1 \mathrm{C} \& 2 \mathrm{NC}$ \& 3NC
1NC \& 2C \& 3C
1NC \& 2C \& 3NC
1NC \& 2NC \& 3C
1NC \& 2NC \& 3NC
You saw that the first case is $1 \mathrm{C} \& 2 \mathrm{C}$. Here the employee was caught twice and was dismissed. He can not continue. Hence this case was closed here.
In other cases, the combinations were as given above.
Now the probability of being caught was $1 / 4$. As an exhaustive event the probability of not being caught was $1-1 / 4=3 / 4$.
Now the probabilities can be calculated as follows:
1C \& 2C (1/4X1/4 = 1/16)
1 C \& 2 NC \& 3C $(1 / 4 \mathrm{X} 3 / 4 \mathrm{X} 1 / 4=3 / 64)$
1 C \& 2NC \& 3NC $(1 / 4 \mathrm{X} 3 / 4 \mathrm{X} 3 / 4=9 / 64)$
1 NC \& 2C \& 3C ($3 / 4 \times 1 / 4 \times 1 / 4=3 / 64)$
1NC \& 2C \& 3NC (3/4x1/4X3/4 = 9/64)
1NC \& 2NC \& 3C ($3 / 4 \times 3 / 4 \times 1 / 4=9 / 64)$
1 NC \& 2NC \& 3NC $(3 / 4 \times 3 / 4 \times 3 / 4=27 / 64)$
The probabilities for each combination of events are now summarized below:
First Caught, Second Caught, Dismissed:
1C (1/4) \& 2C (1/4) (Dismissed 1) $(1 / 16=4 / 64)$
First caught, Second Not Caught, $3^{\text {rd }}$ Caught, Dismissed:
1C (1/4) \& 2NC (3/4) \& 3C (1/4) (Dismissed 2) (3/64)
First caught, Second Not Caught, $3^{\text {rd }}$ Not Caught, Not Dismissed
1C (1/4) \& 2NC (3/4) \& 3NC (3/4) (Not dismissed 1) (9/64)
First Not Caught, Second Caught, $3^{\text {rd }}$ Caught, Dismissed
1NC (3/4) \& 2C (1/4) \& 3C (1/4) (Dismissed 3) (3/64)
First Not caught, Second Caught, $3^{\text {rd }}$ Not Caught, Not Dismissed
1NC (3/4) \& 2C (1/4) \&3NC (3/4) (Not dismissed 2) (9/64)
First caught, Second Not Caught, $3^{\text {rd }}$ Caught, Not Dismissed
1NC (3/4) \& 2NC (3/4) \& 3C (1/4) (Not dismissed 3) (9/64)
First caught, Second Not Caught, $3^{\text {rd }}$ Not Caught, Not Dismissed
1NC (3/4) \& 2NC (3/4) \& 3NC (3/4) (Not dismissed 4) (27/64)

Probabilities

p(caught) =
The probability of being caught can be calculated by thinking that these are mutually events. All situations where there was a dismissal can be considered.
Probability(caught) =
$p($ dismissed 1$)+p($ dismissed 2$)+p($ dismissed 3$)=4 / 64+3 / 64+3 / 64$
= 10/64
p (not caught) $=$
Once we have the probability of being caught we can find out the probability of not being caught as an exhaustive event. Thus:
p(not caught)
= 1-p(caught)
= 1 - 10/64
$=54 / 64$

EXAMPLE 2

Two firms compete for contracts.
A has probability of $3 / 4$ of obtaining one contract.
B has probability of $1 / 4$.
What is the probability that when they bid for two contracts, firm A will obtain either the first or second contract?

Solution:

$P($ A gets first or A gets second $)=3 / 4+3 / 4=6 / 4$
Wrong! Probability greater than 1!
We ignored the restriction: events must be mutually exclusive.
We are looking for probability that A gains the first or second or both.
We are not interested in B getting both the contracts
$p(B$ gets first $) \times p(B$ gets both $)=1 / 4 \times 1 / 4=1 / 16$.
$p(A$ gets one or both $)=1-1 / 16=15 / 16$.

Alternative Method

Split "A gets first or the second or both" into 3 parts
A gets first but not second $=3 / 4 \times 1 / 4=3 / 16$
A does not get first but gets second $=1 / 4 \times 3 / 4=3 / 16$
A gets both $=3 / 4 \times 3 / 4=9 / 16$
$P(A$ gets first or second or both $)=3 / 16+3 / 16+9 / 16=15 / 16$

EXAMPLE 3

In a factory 40% workforce is female.
25% females belong to the management cadre.
30% males are from management cadre.
If management grade worker is selected, what is the probability that it is a female?
Draw up a table first.

	Male	Female	Total
Management	$?$	$?$	$?$
Non-Management	$?$	$?$	$?$
Total	$?$	40	100

Calculate

Total male $=100-40=60$
Management female $=0.25 \times 40=10$
Non-Management female $=40-10=30$
Management male $=0.3 \times 60=18$
Non-Management male $=60-18=42$
Management total $=18+10=28$
Non-Management total $=42+30=72$
Summary

Management	18	10	28
Non-Management	42	30	72
Total	60	40	100

$p($ management grade worker is female $)=10 / 28$

EXAMPLE 4

A pie vendor has collected data over sale of pies. This data is organized as follows:

No. Pies sold Income (X)	$\%$ Days(f)	fX Rs.	
40	$\times 35=1400$	20	28000
50	1750	20	35000
60	2100	30	63000
70	2450	20	49000
80	2800	10	28000
	Total	100	20300
Mean/day $=203000 / 100=2030$			

The selling price per pie was Rs. 35 . What was the mean sale per day?
Such a question can be solved by calculating the sale in each slab and then dividing the total sale by number of pies.
\% days is the probability. If multiplied with the income from each pie, the expected sale from all pies can be calculated. The overall expected value was 203,000. When divided by the number of days (100) an average of 2,030 Rs. Per day was obtained as average sale per day.

EXPECTED VALUE

EMV $=\sum$ (probability of outcome x financial result of outcome)

Example

In an insurance company 80% of the policies have no claim.
In 15% cases the Claim is 5000 Rs.
For the remaining 5\% the Claim is 50000 Rs.
What is the Expected value of claim per policy?
Applying the formula above:
$\mathrm{EMV}=0.8 \times 0+0.15 \times 5000+0.05 \times 50000$
$=0+750+2500$
$=3250 \mathrm{Rs}$.

TYPICAL PRODUCTION PROBEM

In a factory producing biscuits, the packing machine breaks 1 biscuit out of twenty ($p=$ $1 / 20=0.05$).
What proportion of boxes will contain more than 3 broken biscuits?
This is a typical Binomial probability situation!
The individual biscuit is broken or not
= two possible outcomes

Conditions for Binomial Situation

1. Either or situation
2. Number of trials (n) known and fixed
3. Probability for success on each trial (p) is known and fixed

CUMULATIVE BINOMIAL PROBABILITIES

The Cumulative Probability table gives the probability of r or more successes in n trials, with the probability p of success in one trial
In the table:
The total number of trials $\mathrm{n}=1$ to 10
The number of successes $r=1$ to 10
The probability $p=0.05,0.1,0.2,0.25,0.3,0.35,0.4,0.45,0.5$

LECTURE 38

PATTERNS OF PROBABILITY: BINOMIAL, POISSON AND NORMAL DISTRIBUTIONS
 PART 2

OBJECTIVES

The objectives of the lecture are to learn about:

- Review Lecture 37
- Patterns of Probability: Binomial, Poisson and Normal Distributions

CUMULATIVE BINOMIAL PROBABILITIES

Probability of r or more successes in n trials with the probability of success in each trial

- Look in column for n
- Look in column for r
- Look at column for value of $p(0.05$ to 0.5$)$

Example

$\mathrm{n}=5 ; \mathrm{r}=4 ; \mathrm{p}=0.5$
p (4 or more successes in 5 trials)
$=0.1874=18.74 \%$

BINOMDIST

Returns the individual term binomial distribution probability. Use BINOMDIST in problems with a fixed number of tests or trials, when the outcomes of any trial are only success or failure, when trials are independent, and when the probability of success is constant throughout the experiment. For example, BINOMDIST can calculate the probability that two of the next three babies born are male.

Syntax

BINOMDIST(number_s,trials,probability_s,cumulative)
Number_s is the number of successes in trials.
Trials is the number of independent trials.
Probability_s is the probability of success on each trial.
Cumulative is a logical value that determines the form of the function. If cumulative is TRUE, then BINOMDIST returns the cumulative distribution function, which is the probability that there are at most number_s successes; if FALSE, it returns the probability mass function, which is the probability that there are number_s successes.

Remarks

- Number_s and trials are truncated to integers.
- If number_s, trials, or probability_s is nonnumeric, BINOMDIST returns the \#VALUE! error value.
- If number_s < 0 or number_s > trials, BINOMDIST returns the \#NUM! error value.
- If probability_s < 0 or probability_s > 1, BINOMDIST returns the \#NUM! error value.
- The binomial probability mass function is:

$$
b(x ; n, p)=\binom{n}{x} p^{\prime}(1-p)^{n-y}
$$

where:

$$
\binom{n}{x}
$$

The cumulative binomial distribution is:

$$
B(x ; n, p)=\sum_{y=0}^{s} b(y ; n, p)
$$

Example

In the above example, the BINOMDIST function was used to calculate the probability of exact 6 out of 10 trials being successful. Here the value of Cumulative was set as False. The following example also shows a similar calculation.

EXAMPLE USING TABLES

We have the probability of 3 or more dry days in a week. What is the chance of getting 5 or more wet days next week?
$n=7 ; r=3 ; p=0.4$
From the tables, the probability of 3 or more in a sample of 7 was found as 0.5800 .
$p(3$ or more dry days $)=0.5800$
Now:
$p(2$ or less dry days $)+p(3$ or more dry days $)=1$
$p(2$ or less dry days $)=1-p(3$ or more dry days $)$
$p(2$ or less dry days $)=1-0.5800=0.4200$
= Chance of 5 or more wet days next week.
Note that we thought in terms of 2 or less dry days. In reality, it means 5 or more wet days which we wanted to find out.

EXAMPLE 1

The probability of wet days is 60%. Note that the figure 0.6 is beyond the maximum value 0.5 as given in the tables. Let us first convert our problem to $p(d r y)=1-0.6=0.4$. Now $\mathrm{p}(5$ or more wet days) can be restated as $\mathrm{p}(2$ or less dry days). The BINOMDIST function is for p (r or more). Let us convert p (2 or less dry days) to $1-p$ (3 or more days). Now the value of $n=7, r=3$ and $p=0.4$.
Using BINOMDIST, the answer is 0.4199 . Note that the value of cumulative was TRUE.

EXAMPLE 2

In a transmission where 8 bit message is transmitted electronically there is 10% probability of one bit being transmitted erroneously? What is the chance that entire message is transmitted correctly)?
We can state that the probability required is for 0 successes (errors) in 8 trials (bits).
p (one bit transmitted erroneously) $=0.1$
$n=8 ; r=8, p=0.1 ; p$ (exactly 0 errors)?
$p(0$ errors $)+p(1$ or more errors $)=1$
$p(0$ errors $)=1-p$ (1 or more errors)

From the Tables

p (1 or more) is 0.5695 .
Hence $p(0)=1-0.5695=0.4305$

Using BINOMDIST

The data was for 0 or more successes. BINOMDIST function gives the value for at most r successes. Hence the answer was obtained directly.
区 Microsoff Excel-Lecture_38

EXAMPLE 3

A surgery is successful for 75% patients. What is the probability of its success in at least 7 cases out of randomly selected 9 patients?
p (success in at least 7 cases in randomly selected 9 patients)?
Here
$n=9 ; p($ success $)=0.75 ; p$ (at lease 7 cases)?
$p=0.75$ is outside the table
Let us invert the problem.
p (failure) $=1-0.75=0.25$
Success at least $7=$ Failure 2 or less
P (failure 2 or less) $=1-\mathrm{p}$ (failure 3 or more)
$=1-0.3993=0.6007=60 \%$

Calculation using BINOMDIST

Here the question was inverted.
We had to find 7 successes out of 9 . The probability was 75% for success. It becomes 25% for failure. Now let us restate the problem in terms of failure.
We are interested in 7 or more successes. It means 2 or less failures.
Now the BINOMDIST function gives us at most r successes. In other words 2 or less. Hence if we specify $r=2$, we get the answer 0.6007 directly.

区Wicrosefit Exel Lecture_38			
A	c	0	
${ }_{76}$ EXAMPLE			
${ }_{77}$ Probability of success $\mathbf{= 0 . 7 5}$. Failure $=0.25$			
${ }_{78}$ Probability of 7 successes out of 9 ? Or 2 or less failures			
${ }^{80}$ Data Description			
${ }_{81} \quad 2$ Number of successes in trials			
$82 \quad 9$ Number of independent trials			
$83 \quad 0.25$ Probability of success on each tri			
$84 \quad 0.6007$ =BINOMDIST(B81;B82;B83;TRUE			
${ }_{85}$ At most 2 successes: (0.6007)			

NEGBINOMDIST

Returns the negative binomial distribution. NEGBINOMDIST returns the probability that there will be number_f failures before the number_s-th success, when the constant probability of a success is probability_s. This function is similar to the binomial distribution, except that the number of successes is fixed, and the number of trials is variable. Like the binomial, trials are assumed to be independent.
For example, you need to find 10 people with excellent reflexes, and you know the probability that a candidate has these qualifications is 0.3 . NEGBINOMDIST calculates the probability that you will interview a certain number of unqualified candidates before finding all 10 qualified candidates.

Syntax

NEGBINOMDIST(number_f,number_s,probability_s)
Number_f is the number of failures.
Number_s is the threshold number of successes.
Probability_s is the probability of a success.
Remarks

- Number_f and number_s are truncated to integers.
- If any argument is nonnumeric, NEGBINOMDIST returns the \#VALUE! error value.
- If probability_s < 0 or if probability > 1, NEGBINOMDIST returns the \#NUM! error value.
- If (number_f + number_s - 1) ≤ 0, NEGBINOMDIST returns the \#NUM! error value.
- The equation for the negative binomial distribution is:

$$
n b(x ; r, p)=\binom{x+r-1}{r-1} p^{\prime}(1-p)^{\prime}
$$

where:
x is number_ f, r is number_s, and p is probability_s.

NEGBINOMDIST- EXAMPLE

You need to find 10 people with excellent reflexes, and you know the probability that a candidate has these qualifications is 0.3
NEGBINOMDIST calculates the probability that you will interview a certain number of unqualified candidates before finding all 10 qualified candidates.

Microsofit Exel - Lecture 38		-
A B	0	E
${ }_{11}$ NEGBINOMDIST(number_f,number_s,probability_s)		
12 Data Description		
10 Number of failures		
5 Threshold number of successes		
15 0.25 Probability of a success		
${ }_{16} 0.055$		
${ }_{17}$ Negative binomial distribution for the		
${ }_{18}$ terms above (0.055049)		
風		

CRITBINOM

Returns the smallest value for which the cumulative binomial distribution is greater than or equal to a criterion value. Use this function for quality assurance applications. For example, use CRITBINOM to determine the greatest number of defective parts that are allowed to come off an assembly line run without rejecting the entire lot.
Syntax
CRITBINOM(trials,probability_s,alpha)
Trials is the number of Bernoulli trials.
Probability_s is the probability of a success on each trial.
Alpha is the criterion value.
Remarks

- If any argument is nonnumeric, CRITBINOM returns the \#VALUE! error value.
- If trials is not an integer, it is truncated.
- If trials <0, CRITBINOM returns the \#NUM! error value.
- If probability_s is < 0 or probability_s > 1, CRITBINOM returns the \#NUM! error value.
- If alpha <0 or alpha >1, CRITBINOM returns the \#NUM! error value.

Example

	A	B
1	Data	Description
2	6	Number of Bernoulli trials
3	0.5	Probability of a success on each trial
4	0.75	Criterion value
	Formula	Description (Result)
=CRITBINOM(A2,A3,A4)	Smallest value for which the cumulative binomial distribution is greater than or equal to a criterion value (4)	

LECTURE 39
PATTERNS OF PROBABILITY: BINOMIAL, POISSON AND NORMAL DISTRIBUTIONS

PART 3

OBJECTIVES

The objectives of the lecture are to learn about:

- Review Lecture 38
- Patterns of Probability: Binomial, Poisson and Normal Distributions

CRITBINOM EXAMPLE

The example shown under CRITBINOM in Handout 38 is shown below.

EXPECTED VALUE EXAMPLE

A lottery has 100 Rs. Payout on average 20 turns.
Is it worthwhile to buy the lottery if the ticket price is 10 Rs.?
Expected win per turn $=p($ winning $) \times$ gain per win $+p($ losing $) x$ loss if you loose $=1 / 20 \times(100-10)+19 / 20 \times(-10)$ Rs.
= 90/20-190/20 Rs.
$=4.5-9.5=-5$ Rs.
So on an average you stand to loose 5 Rs.

DECISION TABLES

Look at the data in the table below:
No. of Pies demanded \% Occasions
$25 \quad 10$
$30 \quad 20$
$35 \quad 25$
$40 \quad 20$
$45 \quad 15$
$50 \quad 10$

Price per pie $=$ Rs. 15
Refund on return $=$ Rs. 5
Sale price $=$ Rs. 25
Profit per pie = Rs. $25-15=$ Rs. 10
Loss on each return = Rs. $15-5=$ Rs. 10
How many pies should be bought for best profit?
To solve such a problem, a decision table is set up as shown below. The values in the first column are number of pies to be purchased. Figures in columns are the sale with \% share of sale within brackets. If the number of pies bought is less than the number that can be sold, the number of pies sold remains constant. If the number of pies bought exceeds the number of pies sold then the remaining are returned. This means a loss. For every value the sum of profit for sale and loss for pies returned is calculated.
The average sale for each row is calculated by multiplying the profit for each sale with \% sale in the column. An example calculation is given as a guide for 30 pies.

DECISION TABLES

$25(0.1)$									$30(0.2)$	$35(0.25)$	$40(0.2)$	$45(0.15)$	$50(0.1)$	EMV
25	250	250	250	250	250	250	250							
30	200	300	300	300	300	300	290							
35	150	250	350	350	350	350	310							
Buy														
40	100	200	300	400	400	400	305							
45	50	150	250	350	450	450	280							
-	0	100	200	300	400	500	240							

Expected profit 30 pies

$=0.1 \times 200+0.2 \times 300+0.25 \times 300+0.2 \times 300+0.15 \times 300+0.1 \times 300$
$=20+60+75+60+45+30$
$=290$ Rs.

Best Profit

It may be noted that the best profit is for 35 Pies $=$ Rs. 310

DECISION TREE TOY MANUFACTURING CASE

The problem of the manufacturer intending to start manufacturing a new toy under the conditions that the TV series may or may not appear, that the rival may or may not sell a similar toy is now solved below.
Here a Decision tree has been developed with the possible branches as shown below.
Each sequence represents an application of the AND rule.
1A Abandon
1B Go ahead >2 A: Series appears (60\%)
$>2 B$: No series (40\%)
$>2 A>3 A$: Rival markets (50\%)
$>2 A>3 B$: No Rival (50\%)

Production

Series, no rival $=12000$ units
Series, rival $=8000$ units
No series = 2000 units
Investment = Rs. 500000
Profit per unit = Rs. 200
Loss if abandon = Rs. 500000
What is the best course of action?

Decision Tree

Profit if rival markets, series appears $=8000 \times 200-500000=1600000-500000=$ 1100000 Rs.
Profit if no rivals $=12000 \times 200-500000=2400000-500000=1900000$ Rs.
Profit/Loss if no series $=2000 \times 200-500000=400000-500000=-100000$ Rs. (No
series)
$E M V=$ Rival markets and no rivals $=0.5 \times 1100000+0.5 \times 1900000=1500000$ (Series)
$E M V=0.6 \times 1500000+0.4 \times-100000=900000-40000=860000$ Rs.

Conclusion

It is clear that in spite of the uncertainty, there is a likelihood of a reasonable profit.
Hence the conclusion is:
Go ahead

THE POISSON DISTRIBUTION

The POISSION Distribution has the following characteristics:

- Either or situation
- No data on trials
- No data on successes
- Average or mean value of successes or failures

This is a typical Poisson Situation.
Characteristics

- Either/or situation
- Mean number of successes per unit, m, known and fixed
- p, chance, unknown but small, (event is unusual)

THE POISSON TABLES OF PROBABILITIES

Gives cumulative probability of r or more successes
Knowledge of m is required.
Table gives the probability of that r or more random events are contained in an interval when the average number of events per interval is m

Example 1

$m=7 ; r=9$;
$P(r$ or more successes $)=0.2709$
Values given in 4 decimals

Example 2

Attendance in a factory shows 7 absences.
What is the probability that on a given day there will be more than 8 people absent?

Solution

m = 7
$r=$ More than $8=9$ or more
$p(9$ or more successes $)=0.2709$

Example 3

An automatic production line breaks down every 2 hours.
Special production requires uninterrupted operation for 8 hours.
What is the probability that this can be achieved?

Solution

$m=8 / 2=4$
$r=0$ (no breakdown)
$p(0$ breakdown $)=1-p(1$ or more breakdowns)
$=1-0.9817=0.0183=1.83 \%$

Example 4

An automatic packing machine produces on an average one in 100 underweight bags. What is the probability that 500 bags contain less than three underweight bags?

Solution

```
m=1\times500/100=5
p(r = less than three) = 1-p(r=3 or more)
= 1-0.8753
= 0.1247
= 12.47%
```


Example 5

Faulty apple toffees in a production line average out at 6 per box.
The management is willing to replace one box in a hundred.
What is the number of faulty toffees that this probability corresponds to?

Solution

$p=1 / 100=0.1$
$\mathrm{m}=6$
Look for value of \mathbf{p} close to 0.1
$p(r=12)=0.0201$
$p(r=13)=0.0088$
Hence 13 or more faulty toffees correspond to this probability.

LECTURE 40

PATTERNS OF PROBABILITY: BINOMIAL, POISSON AND NORMAL DISTRIBUTIONS

PART 4

OBJECTIVES

The objectives of the lecture are to learn about:

- Review Lecture 39
- Patterns of Probability: Binomial, Poisson and Normal Distributions

Part 4

POISSON WORKSHEET FUNCTION

Returns the Poisson distribution. A common application of the Poisson distribution is predicting the number of events over a specific time, such as the number of cars arriving at a toll plaza in 1 minute.

Syntax

POISSON(x,mean,cumulative)
X is the number of events.
Mean is the expected numeric value.
Cumulative is a logical value that determines the form of the probability distribution returned. If cumulative is TRUE, POISSON returns the cumulative Poisson probability that the number of random events occurring will be between zero and x inclusive; if FALSE, it returns the Poisson probability mass function that the number of events occurring will be exactly x.

Remarks

- If x is not an integer, it is truncated.
- If x or mean is nonnumeric, POISSON returns the \#VALUE! error value.
- If $x \leq 0$, POISSON returns the \#NUM! error value.
- If mean ≤ 0, POISSON returns the \#NUM! error value.
- POISSON is calculated as follows.

For cumulative = FALSE:
POISSON $=\frac{e^{-\lambda} \lambda^{x}}{x!}$
For cumulative $=$ FALSE:
CUMPOISSON $=\sum_{k=0}^{x} \frac{e^{-\lambda} \lambda}{k!}$

Example

An application of the POISSON function is shown below. In this slide the value of Cumulative was TRUE. It means that the probability is for at the most case.

In the slide below the Cumulative is FALSE, which means that the probability is for exactly 2 events.
区 Microsoft Excel - Lecture_39
圈 Eile Edit Wew Insert Format Iools Data Window Help

SUM $\quad \mathrm{X} \vee f_{x}=$ POISSON(A17;A18;FALSE)

THE PATTERN

In Binomial and Poisson the situations are: either/or
Number of times could be counted.
In the Candy problem with underweight boxes, there is measurement of weight.
Binomial and Poisson are discrete probability distributions.
Candy problem is a Continuous probability distribution. Such problems need a different treatment.

FREQUENCY BY WEIGHT

Look at the frequency distribution of weight of sample bags.

Frequency distribution graph of the sample is shown below. You may see a distinct shape in the graph. It appears to be symmetrical.

The shape of the distribution is that of a Normal Distribution as shown as New distribution in the slide below. On this slide you also see a Standard Normal Distribution with 0 mean and standard deviations 1, 2, 3, 4 etc.

NORMAL DISTRIBUTION

The blue Curve is a typical Normal Distribution.
A standard normal distribution is a distribution with mean $=0$ and standard deviation $=$ 1.

The Y -axis gives the probability values.
The X -axis gives the z (measurement) values.
Each point on the curve corresponds to the probability p that a measurement will yield a particular z value (value on the x-axis.).

Probability is a number from 0 to 1.
Percentage probabilities -multiply p by 100.
Area under the curve must be one.
Note how the probability is essentially zero for any value z that is greater than 3 standard deviations away from the mean on either side.

Mean gives the peak of the curve.
Standard deviation gives the spread.

Weight distribution case

Mean $=510 \mathrm{~g}$
StDev $=2.5 \mathrm{~g}$
What proportion of bags weigh more than 515 g ?
Proportion of area under the curve to the right of 515 g gives this probability

AREA UNDER THE STANDARD NORMAL CURVE

The normal distribution table gives the area under one tail only.
z-value
Ranges between 0 and 4 in first column.
Ranges between 0 and 0.09 in other columns.

Example

Find area under one tail for z -value of 2.05 .

- Look in column 1. Find 2.0.
- Look in column 0.05 and go to intersection of 2.0 and 0.05 .
- The area (cumulative probability of a value greater than 2.05) is the value at the intersection $=0.02018$ or 2.018%

CALCULATING Z- VALUES

$z=$ (Value $x-$ Mean)/StDev
Process of calculating z from x is called Standardisation.
z indicates how many standard deviations the point is from the mean

Example 1

Find proportion of bags which have weight in excess of 515 g .
Mean $=510$. StDev $=2.5 \mathrm{~g}$

Solution

$z=(515-510) / 2.5=2$
From tables: Area under tail $=0.02275$ or 2.28%

Example 2

What percentage of bags filled by the machine will weigh less than 507.5 g ?
Mean $=510 \mathrm{~g} ;$ StDev $=2.5 \mathrm{~g}$
Solution
$z=(507.5-510) / 2.5=-1$
Look at value of $z=+1$
Area $=0.158$
Hence:
15.8% bags weigh less than 507.5 g

Example 3

What is the probability that a bag filled by the machine weighs less than 512 g ?
$z=(512-510) / 2.5=0.8$

Solution

Area under right tail $=0.2119$
$=p$ (weighs more than 512)
$p($ weighs less than 512$)=1-p($ weighs more than 512$)$
= $1-0.2119$
$=0.7881$

Example 4

What percentage of bags weigh between 512 and $515 ?$
$z 1=(512-510) / 2.5=0.8$

Solution

Area $1=0.2119$
$z 2=(515-510) / 2.5=2$
Area $2=0.02275$
$p($ bags weighs between 512 and 515 $)=$
Area 1 - Area 2
$=0.2119-0.02275$
$=0.18915=18.9 \%$

LECTURE 41

ESTIMATING FROM SAMPLES: INFERENCE PART 1

OBJECTIVES

The objectives of the lecture are to learn about:

- Review Lecture 40
- Estimating from Samples: Inference

NORMDIST

Returns the normal distribution for the specified mean and standard deviation. This function has a very wide range of applications in statistics, including hypothesis testing.

Syntax

NORMDIST(x,mean,standard_dev,cumulative)
\mathbf{X} is the value for which you want the distribution.
Mean is the arithmetic mean of the distribution.
Standard_dev is the standard deviation of the distribution.
Cumulative is a logical value that determines the form of the function. If cumulative is TRUE, NORMDIST returns the cumulative distribution function; if FALSE, it returns the probability mass function.

Remarks

- If mean or standard_dev is nonnumeric, NORMDIST returns the \#VALUE! error value.
- If standard_dev ≤ 0, NORMDIST returns the \#NUM! error value.
- If mean $=\overline{0}$, standard_dev $=1$, and cumulative $=$ TRUE, NORMDIST returns the standard normal distribution, NORMSDIST.
- \quad The equation for the normal density function (cumulative $=$ FALSE) is:

$$
f(x ; A, \sigma)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\left(\frac{(\omega-\mu)^{2}}{2 \alpha^{2}}\right)}
$$

- When cumulative $=$ TRUE, the formula is the integral from negative infinity to x of the given formula.

Example

In the slide the x value is 42 . Arithmetic mean is 40 . Standard deviation is 1.5 . The cumulative distribution is 0.9 .

	Weof Exal Lertue eis
${ }^{\text {a }}{ }^{\text {b }}$ - ${ }^{\text {c }}$	
NORMDIST(x,mean,standard_dev,cumulative)	
	Data Description
	42 Value for which you want
	40 Arithmetic mean of the distribution
	1.5 Standard deviation of the distribution
	0.9
	Cumulative distribution function for
	the terms above (0.908789)

NORMSDIST

Returns the standard normal cumulative distribution function. The distribution has a mean of 0 (zero) and a standard deviation of one. Use this function in place of a table of standard normal curve areas.
Syntax
NORMSDIST(z)
\mathbf{z} is the value for which you want the distribution.
Remarks

- If z is nonnumeric, NORMSDIST returns the \#VALUE! error value.
- The equation for the standard normal density function is:

Example
The input to the NORMSDIST function is the z-value. The output is the cumulative probability distribution. In the example $z=1.333333$. The normal cumulative probability function is 0.908789 .

NORMINV

Returns the inverse of the normal cumulative distribution for the specified mean and standard deviation.

Syntax

NORMINV(probability,mean,standard_dev)
Probability is a probability corresponding to the normal distribution.
Mean is the arithmetic mean of the distribution.
Standard_dev is the standard deviation of the distribution.
Remarks

- If any argument is nonnumeric, NORMINV returns the \#VALUE! error value.
- If probability < 0 or if probability > 1, NORMINV returns the \#NUM! error value.
- If standard_dev ≤ 0, NORMINV returns the \#NUM! error value.
- If mean $=0$ and standard_dev $=1$, NORMINV uses the standard normal distribution (see NORMSINV).
NORMINV uses an iterative technique for calculating the function. Given a probability value, NORMINV iterates until the result is accurate to within $\pm 3 \times 10^{\wedge}-7$. If NORMINV does not converge after 100 iterations, the function returns the \#N/A error value.

Example

Here the probability value, arithmetic mean and standard deviation are given. The answer is the x-value.

NORMSINV

Returns the inverse of the standard normal cumulative distribution. The distribution has a mean of zero and a standard deviation of one.

Syntax

NORMSINV(probability)
Probability is a probability corresponding to the normal distribution.

Remarks

- If probability is nonnumeric, NORMSINV returns the \#VALUE! error value.
- If probability < 0 or if probability > 1, NORMSINV returns the \#NUM! error value.

NORMSINV uses an iterative technique for calculating the function. Given a probability value, NORMSINV iterates until the result is accurate to within $\pm 3 \times 10^{\wedge}-7$. If NORMSINV does not converge after 100 iterations, the function returns the \#N/A error value.

Example

In this case, the input is the z-value. The corresponding cumulative distribution is calculated.

SAMPLING VARIATIONS

Electronic components are despatched by a manufacturer in boxes of 500 .
A small number of faulty components are unavoidable.
Customers have agreed to a defect rate of 2%.
One customer recently found 25 faulty components (5\%) in a box.
Was this box representative of production as a whole?
The box represents a sample from the whole output. In such a case sampling variations are expected
If overall proportion of defective items has not increased, just how likely is it that a box of 500 with 25 defective components will occur?

SAMPLING VARIATIONS EXAMPLE 1

In a section of a residential colony there are 6 households say Household A, B, C, D, E and F. A survey is to be carried out to determine \% of households who use corn flakes (cf) in breakfast.
Survey data exists and the following information is available:
Households A, B, C and D: Use corn flakes
Households E and F: Do not
It was decided to take random samples of 3 households
The first task is to list all possible samples and find \% of each sample using corn flakes.
Possible Samples

Sample $\%$ cf users		Sample cf users	
ABC	100	BCD	100
ABD	100	BCE	67
ABE	67	BCF	67
ABF	67	BDE	67
ACD	100	BDF	67
ACE	67	BEF	33
ACF	67	CDE	67
ADE	67	CDF	67
ADF	67	CEF	33
AEF	33	DEF	33

Percentage In Sample

Out of 20 samples:
4 contain 100\% cf users,
12 contain 67% cf users,
4 contain 33% cf users,
with required characteristic
If the samples are selected randomly, then each sample is likely to arise.
The probability of getting a sample
with 100% cf users is: $4 / 20$ or 0.2
with 67% : $12 / 20$ or 0.6
with 33% : $4 / 20$ or 0.2
This is a Sampling Distribution.

SAMPLING DISTRIBUTION

The sampling distribution of percentages is the distribution obtained by taking all possible samples of fixed size n from a population, noting the percentage in each sample with a certain characteristic and classifying these into percentages

Mean of the Sampling Distribution

Using the above data:
Mean $=100 \% \times 0.2+67 \% \times 0.6+33 \% \times 0.2=67 \%$
Mean of the sampling distribution is the true percentage for the population as a whole.
You must make allowance for variability in samples.
Conditions For Sample Selection
${ }^{\bullet}$ Number of items in the sample, n, is fixed and known in advance

- Each item either has or has not the desired characteristic
-The probability of selecting an item with the characteristic remains constant and is known to be P percent
If n is large (>30) then the distribution can be approximated to a normal distribution STANDARD ERROR OF PERCENTAGES
Standard deviation of the sampling distribution tells us how the sample values differ from the mean P.
It gives us an idea of error we might make if we were to use a sample value instead of the population value.
For this reason it is called STandard Error of Percentages or STEP.

STEP

The sampling distribution of percentages in samples of n items ($n>30$) taken at random from an infinite population in which P percent of items have characteristic X will be:
A Normal Distribution
with mean P\%
and standard deviation (STEP) $=[P(100-P) / n]^{\wedge} 1 / 2 \%$
The mean and StDev of the sampling distribution of percentages will also be percentages.

LECTURE 42

Estimating from Samples: Inference
 Part 2

OBJECTIVES

The objectives of the lecture are to learn about:

- Review Lecture 41
- Estimating from Samples: Inference

EXAMPLE 1

In a factory 25% workforce is women.
How likely is it that a random sample of 80 workers contains 25 or more women?

Solution:

Mean = 25\%
STEP $=[25(100-25) / 80]^{\wedge} 1 / 2$
$=[(25 \times 75) / 80]^{\wedge} 1 / 2$
= 4.84\%
$\%$ women in sample $=(25 / 80) \times 100=31.25 \%$
$z=(31.25-25) / 4.84$
$=1.29$
We need to find p (sample contains 25 women).
Look for p against $z=1.29$.
$p($ sample contains 25 women $)=0.985$ or about 10%.

APPLICATIONS OF STEP

Some important issues are:
\bullet What is the probability that such a sample will arise?

- How to estimate the percentage P from information obtained from a single sample?
- How large a sample will be required in order to estimate a population percentage with a given degree of accuracy?
To obtain answers to these questions, let us solve some typical problems.

CONFIDENCE LIMITS

A market researcher wishes to conduct a survey to determine \% consumers buying the company's products.
He selects a sample of 400 consumers at random.
He finds that 280 of these (70%) are purchasers of the product.
What can he conclude about \% of all consumers buying the product?
First let us decide some limits.
It is common to use 95% confidence limits.
These will be symmetrically placed around the 70% buyers.
In a normal sampling distribution 2.5% corresponds to a z-value of 1.96 on either side of 70\%.
Now the sample percentage of 70% can be used as an approximation for. population percentage P.

Hence:

STEP $=\left[(70(100-70) / 400]^{\wedge} 1 / 2=2.29 \%\right.$

Confidence Limits

Estimate for population percentage $=70+/-1.96 \times$ STEP
Or
70 +/- 1.96×2.29
$=65.515 \%$ and 74.49% as the two limits for 95% confidence interval.
We can round off 1.96 to 2

Then with 95% confidence we estimate the population percentage with that characteristic as lying in the interval
P +/- $2 \times$ STEP

EXAMPLE 2

A sample of 60 students contains 12 (20\%) who are left handed.
Find the range with 95\% confidence in which the entire left handed students fall.
Range $=20+/-2 \times$ STEP
$=20+/-2 \times[(20 \times 80) / 60]^{\wedge 1} / 2$
$=9.67 \%$ and 30.33%

ESTIMATING PROCESS SUMMARY

1. Identify n and P (the sample size and percentage) in the sample.
2. Calculate STEP using these values.

- The 95\% confidence interval is approximately $\mathrm{P}+/-2$ STEP.

99\% confidence
For 99\% confidence limits:
z-value $=2.58$.

FINDING A SAMPLE SIZE

To satisfy 95\% confidence:
$2 \times$ STEP $=5$
STEP = 2.5
Pilot survey value of $P=30 \%$.
STEP $=[(30 \times 70) / n]^{\wedge} 1 / 2=2.5$

Solving

$n=336$
We must interview 336 persons to be 95% confident that our estimate is within 5% of the true answer.

DISTRIBUTION OF SAMPLE MEANS

The standard deviation of the Sampling Distribution of means is called STandard Error of the Mean STEM.
STEM = s.d/(n)^1/2
s.d denotes standard deviation of the population.
n is the size of the sample.

EXAMPLE 3

What is the probability that if we take a random sample of 64 children from a population whose mean IQ is 100 with a StDev of 15 , the mean IQ of the sample will be below $95 ?$

Solution:

$s=15 ; n=64$; population mean $=100$
STEM $=15 /(64)^{\wedge} 1 / 2=15 /(64)^{\wedge} 1 / 2=15 / 8=1.875$
z = 100-95 /STEM
$=5 / 1.875=2.67$
This gives a probability of 0.0038 .
So the chance that the average IQ of the sample is below 95 is very small.

LECTURE 43

HYPOTHESIS TESTING: CHI-SQUARE DISTRIBUTION
 PART 1

OBJECTIVES

The objectives of the lecture are to learn about:

- Review Lecture 42
- Hypothesis testing: Chi-Square Distribution

EXAMPLE 1

An inspector took a sample of 100 tins of beans. The sample weight is 225 g .
Standard deviation is 5 g .
Calculate with 95% confidence the range of the population mean.
Solution:
STEM = s.d/(n)^1/2
s.d is not known

Use s.d of sample as an approximation.
STEM $=5 /(100)^{\wedge} 1 / 2=0.5$
95% confidence interval $=225+/-2 \times 0.5$ or From 224 to 226 g

PROBLEM OF FAULTY COMPONENTS REVISITED

Box of 500 components may have 25 or 5% faulty components.
Overall faulty items $=2 \%$
P = 2\%; n=500;
STEP $=[(2 \times 98) / 500]^{\wedge 1 / 2}$
$=0.626$
To find the probability that the sample percentage is 5% or over:
$z=(5-2) /$ STEP $=3 / 0.626=4.79$
Area against $z=4.79$ is negligible.
Chance of such a sample is very small

FINITE POPULATION CORRECTION FACTOR

If population is very large compared to the sample then multiply STEM and STEP by the:
Finite Population Correction Factor $=[1-(n / N)]^{\wedge} 1 / 2$
Where
$\mathrm{N}=$ Size of the population
$\mathrm{n}=$ Size of the sample
$\mathrm{n}=$ less than 0.1 N

TRAINING MANAGER'S PROBLEM

New refresher course for training of workers was completed.
The Training Manager would like to assess the effect of retraining if any.

Particular questions:

- Is quality of product better than produced before retraining?
- Has the speed of machines increased?
-Do some classes of workers respond better to retraining than others?

Training Manager hopes to:

- Compare the new position with established
- Test a theory or hypothesis about the course

Case Study

Before the course:

Worker X produced 4\% rejects.
After the course:
Out of 400 items 14 were defective $=3.5 \%$
An improvement?
The 3.5% figure may not demonstrate overall improvement.
It does not follow that every single sample of 400 items contains exactly 4% rejects.
To draw a sound conclusion:
Sampling variations must be taken into account.
We do not begin by assuming what we are trying to prove NULL HYPOTHESIS.
We must begin with the assumption that there is no change at all.
This initial assumption is called

NULL HYPOTHESIS

Implication of Null Hypothesis:

That the sample of 400 items taken after the course was drawn from a population in which the percentage of reject items is still 4%.
NULL HYPOTHESIS EXAMPLE

Data:

P = 4\%; n = 400
STEP
$=[P(100-P) / n]^{\wedge} 1 / 2$
$=[4(100-4) / 400]^{\wedge} 1 / 2=0.98 \%$
At 95\% confidence limit:
Range $=4+/-2 \times 0.98=2.04$ to 5.96%
Conclusion:
Sample with 3.5% rejects is not inconsistent.
No ground to assume that \% rejects has changed at all.
On the strength of sample there were no grounds for rejecting Null Hypothesis.

ANOTHER EXAMPLE

Before the course:

5\% rejects

After the course:

2.5% rejects (10 out of 400)
P = 5
STEP $=[5(100-5) / 400]^{\wedge} 1 / 2$
$=[5 \times 95 / 400]^{\wedge} 1 / 2$
$=1.09$
Range at 95 \% Confidence Limits
= 5 +/- 2×1.09
$=2.82 \%$ to 7.18%

Conclusion:

Doubt about Null Hypothesis most of the time
Null hypothesis to be rejected

PROCEDURE FOR CARRYING OUT HYPOTHESIS TEST

1. Formulate null hypothesis
2. Calculate STEP \& P +/- $2 x$ STEP
3. Compare the sample \% with this interval to see whether it is inside or outside If the sample falls outside the interval, reject the null hypothesis (sample differs significantly from the population \%)
If the sample falls inside the interval,
do not reject the null hypothesis (sample does not differ significantly from the population \% at 5\% level)

HOW THE RULE WORKS?

Bigger the difference between the sample and population percentages, less likely it is that the population percentages will be applicable.

- When the difference is so big that the sample falls outside the 95% interval,
then the population percentages cannot be applied.
Null Hypothesis must be rejected
- If sample belongs to majority and it falls within 95\% interval,
then there are no grounds for doubting the Null Hypothesis

FURTHER POINTS ABOUT HYPOTHESIS TESTING

- 99% interval requires $2.58 \times$ STEP. Interval becomes wider. It is less likely to conclude that something is significant.
- (A) We might conclude there is a significant difference when there is none. Chance of error $=5 \%$ (type 1 Error)
(B) We might decide that there is no significant difference when there is one (Type 2 Error)

LECTURE 44

HYPOTHESIS TESTING : CHI-SQUARE DISTRIBUTION
PART 2

OBJECTIVES

The objectives of the lecture are to learn about:

- Review Lecture 43
- Hypothesis Testing : Chi-Square Distribution

FURTHER POINTS ABOUT HYPOTHESIS TESTING

This is a continuation of the points covered under Handout 43.
3. We cannot draw any conclusion regarding the direction the difference is in
(A) Possible to do 1-tailed test

Null Hypotheis: P >= 4\% against the alternative P>4\%
$z=1.64$ for 5\% significance level
Range $=P-1.64 \times$ STEP (0.98\%)

Example

Range $=4-1.64 \times 0.98=2.39 \%$
New figure $=3.5 \%$.
Hence:
There is no reason to conclude that things have improved.
4. We cannot draw any conclusion regarding the direction the difference is in.
(B) Possible to do 2-tailed test

Null Hypothesis: $P>=4 \%$ against the alternative $P>4 \%$
$z=1.96$ for 5% significance level
Range $=\mathrm{P}+/-1.96 \times \operatorname{STEP}$ (0.98\%)

Example

Range $=4+/-2 \times 1.96 \times 0.98=2.08 \%$ to 5.92%
New figure $=3.5 \%$
There is no reason to conclude that things have improved

HYPOTHESES ABOUT MEANS

Let us go back to the problem of retraining course discussed earlier.

Before the course:

Worker X took 2.5 minutes to produce 1 item.
StDev $=0.5 \mathrm{~min}$

After the course:

Foe a sample of 64 items, mean time $=2.58 \mathrm{~min}$
Null hypothesis
No change after the course.

STEM

$=s . d /(n)^{\wedge} 1 / 2=0.5 /(64)^{\wedge} 1 / 2=0.0625$
Range
$=2.5+/-2 \times 0.0625=2.375$ to 2.625 min

Conclusion:

No grounds for rejecting the Null Hypothesis.
There is no change significant at 5% level.

ALTERNATIVE HYPOTHESIS TESTING USING Z-VALUE

z = (sample percentage - population mean)/STEP
$=(3.5-4) / 0.98=0.51$
Compare it with z-value which would be needed to ensure that our sample falls in the 5% tails of distribution (1.96 or about 2).
z is much less than 2.

We conclude that the probability of getting by random chance a sample which differs from the mean of 4% or more is quite high.
Certainly it is greater than the 5% significance level.
Sample is quite consistent with null hypothesis.
Null hypothesis should not be rejected.

PROCESS SUMMARY

1. State Null Hypothesis (1-tailed or 2-tailed)
2. Decide on a significance level and find corresponding critical value of z
3. Calculate sample z (sample value - population value divided by STEP or STEM as appropriate)
4. Compare sample z with critical value of z
5. If sample z is smaller, do not reject the Null Hypothesis
6. If sample z is greater than critical value of z, sample provides ground for rejecting the Null Hypothesis.

TESTING HYPOTHESES ABOUT SMALL SAMPLES

Whatever the form of the underlying distribution the means of large samples will be normally distributed.
This does not apply to small samples.
We can carry out hypothesis testing using the methods discussed only if the underlying distribution is normal.
If we only know the Standard Deviation of sample and have to approximate population Standard Deviation then we use Student's t-distribution.

STUDENT'S t-DISTRIBUTION

Student's T-Distribution is very much like normal distribution.
In fact it is a whole family of t-distributions.
As n gets bigger, t-distribution approximates to normal distribution.
t-distribution is wider than normal distribution.
95% confidence interval reflects greater degree of uncertainty in having to approximate the population Standard Deviation by that of the sample.

EXAMPLE

Mean training time for population = 10 days.
Sample mean for 8 women = 9 days.
Sample Standard Deviation = 2 days.
To approximate population Standard Deviation by a sample divide the sum of squares by
n-1:
STEM $=2 /(8)^{\wedge} 1 / 2=0.71$
Null Hypothesis:
There is no difference in overall training time between men and women.
t-value $=($ sample mean $\boldsymbol{-}$ population mean)/STEM
$=(9-10) / 0.71=-1.41$
For $n=8, v=8-1=7$;
For $5 \%(.05)$ significance level looking at 0.025 (2-tailed):
$t=2.365$ (Calculated table value)
Decision:
Do not reject the Null Hypothesis

SUMMARY - I

If underlying population is normal and we know the Standard Deviation
Then
Distribution of sample means is normal
with
Standard Deviation = STEM = population s.d/(n)^1/2
and
we can use a z-test.

SUMMARY - II

If underlying population is unknown but the sample is large
Then
Distribution of sample means is approximately normal
With
StDev $=$ STEM $=$ population $s . d /(n)^{\wedge} 1 / 2$
and again
we can use a z-test.

SUMMARY - III

If underlying population is normal but we do not know its StDev and the sample is small Then We can use the sample s.d to approximate that of the population with $\mathrm{n}-1$ divisor in the calculation of s.d.
Distribution of sample means is a t-distribution with $\mathrm{n}-1$ degrees of freedom
With
Standard Deviation = STEM = sample s.d/(n)^1/2
And we can use a t-test.

SUMMARY - IV

If underlying population is not normal and we have a small sample Then none of the hypothesis testing procedures can be safely used.

TESTING DIFFERENCE BETWEEN TWO SAMPLE MEANS

A group of 30 from production has a mean wage of 120 Rs. per day with
Standard Deviation = Rs. 10.
50 Workers from Maintenance had a mean of Rs. 130 with
Standard Deviation = 12
Is there a difference in wages between workers?
Difference of two sample means $=s[(1 / \mathrm{n} 1)+(1 / \mathrm{n} 2)]^{\wedge} 1 / 2$
$s=\left[\left(n 1 . s 1^{\wedge} 2+n 2 . s 2^{\wedge} 2\right) /(n 1+n 2)\right]^{\wedge} 1 / 2$
$\mathrm{N} 1=30 ; \mathrm{n} 2=50 ; \mathrm{s} 1=10 ; \mathrm{s} 2=12$
$s=[(30 \times 100+50 \times 144) /(30+50)]^{\wedge 1} / 2=11.29$
Standard Error of Difference in Sample Means (STEDM)
$=11.29(1 / 30+1 / 50)^{\wedge} 1 / 2=2.60$
z = (difference in sample means $\mathbf{- 0}$)/STEDM
= $120-130 / 2.60=-3.85$
This is well outside the critical z for 5% significance.
There are grounds for rejecting Null Hypothesis (There is difference in the two samples).

PROCEDURE SUMMARY

1. State Null Hypothesis and decide significance level
2. Identify information (no. of samples, large or small, mean or proportion) and decide what standard error and what distribution are required
3. Calculate standard error
4. Calculate z or t as difference between sample and population values divided by standard error
5. Compare your z or t with critical value from tables for the selected significance level; if z or t is greater than critical value, reject the Null Hypothesis

MORE THAN ONE PROPORTION

Look at a problem, where after the course some in different age groups shows improvement while others did not.
Let us assume that the expected improvement was uniform. An improvement of 40%, if applied to 21,24 and 15 would give 14, 16 and 10 respectively, who improved. Let us write these values within brackets. Subtracting 14, 16 and 10 from the totals 21,24 and 15 gives us 7,8 and 5 respectively, who did not improve. This is the estimate if every person was affected in a uniform manner.
Let us write the observations as O, in one line (17 17647 9).
Let us write down the expected as E, in the next line as (14 161078 8).
Calculate O-E.
Next calculate ($\mathrm{O}-\mathrm{E})^{\wedge} 2$.
Now standardize (O-E)^2 by dividing by E.
Calculate the total and call it $\chi \mathbf{2}$.

Age	Improved	Did not improve	Total
Under 35	17(14)	4(7)	
35-50	17(16)	7(8)	24
Over 50	6(10)	9(5)	15
Total	40	20	60
O	$17 \quad 17$	64	9
E	1416	107	88
O-E 3	-4	-3 -1	4
(O-E)^2: 9	116	91	16
(O-E)^2:/E: 0.643	30.06251 .6	1.2860 .125	$3.2=6.92$
Measurement of disagreement $=$ Sum [(O-E)^2/E] is known as Chi-squared (χ^{2})			

There are tables that give Critical value of chi-squared at different confidence limits and degrees of freedom v (columns-1) x (rows-1). In the above case $v=2-1 \times 3-1=2$
In the present case, the Critical value of chi-squared at $5 \%(a n d v=2)=5.991$.
The value 6.92 is greater than 5.991 .
This means that the Sample falls outside of 95% interval.
Null hypothesis should be rejected.

CHI-SQUARED SUMMARY

1. Formulate null hypothesis (no association form)
2. Calculate expected frequencies
3. Calculate $\chi 2$
4. Calculate degrees of freedom (rows minus 1) \times (columns minus 1); look up the critical $\chi 2$ under the selected significance level
5. Compare the calculated value of $\chi 2$ from the sample with value from the table; if the sample $\chi 2$ is smaller (within the interval) don't reject the null hypothesis; if it is bigger (outside) reject the null hypothesis

Example

Look at the data in the slide below.

® Microsoft Excel-Emp			
樯 Eile Edit Yiew Insert Format Iools Data			
$\underset{\text { F17 }}{\text { F }}$			
	${ }^{\text {a }}$	B	c
1	STATUS	SEX	AGE
2	0	0	38
3	0	1	37
4	0	1	30
5	0	1	40
6	1	0	36
7	0	1	38
8	0	1	47
9	1	0	32
10	1	0	38
11	0	1	49
12	1	0	44
13	0	1	31

It is possible to carry out t-tests using EXCEL Data Analysis tools.

Data Analysis	? \times
Analysis Tools	OK
Histogram	
Moving Average	Cancel
Random Number Generation	
Rank and Percentile	Help
Regression	Help
Sampling t-Test: Paired Two Sample for Means	
t-Test: Two-Sample Assuming Equal Variances	
t-Test: Two-Sammle Assuming Lnequal Variances	
z-Test: Two Sample for Means	

When you select the tool and press OK, the t-test dialog box is opened as below.

The ranges for the two variables, labels and output options are specified. For the above data the output was as follows:

CHITEST

Returns the test for independence. CHITEST returns the value from the chi-squared ($\gamma 2$) distribution for the statistic and the appropriate degrees of freedom. You can use y2 tests to determine whether hypothesized results are verified by an experiment.

Syntax

CHITEST(actual_range,expected_range)
Actual_range is the range of data that contains observations to test against expected values.
Expected_range is the range of data that contains the ratio of the product of row totals and column totals to the grand total.
Remarks
－If actual＿range and expected＿range have a different number of data points， CHITEST returns the \＃N／A error value．
－The \quad 2 test first calculates a y 2 statistic and then sums the differences of actual values from the expected values．The equation for this function is CHITEST＝p（ $X>y 2$ ），where：

$$
x^{2}=\sum_{i=1}^{C} \sum_{i=1}^{c} \frac{\left(A_{i /}-E_{i j}\right)^{2}}{E_{i /}}
$$

and where：
Aij＝actual frequency in the i －th row， j －th column
Eij＝expected frequency in the i－th row，j－th column
$r=$ number or rows
$c=$ number of columns
CHITEST returns the probability for a $\mathrm{\gamma} 2$ statistic and degrees of freedom，df，where $\mathrm{df}=$ $(r-1)(c-1)$ ．

Example

区 Microsoft Excel－Lecture＿44 —国区
图 Ele Edit Yiew Insert Format Iools Data Window Help

A3：B5；A7： The $\gamma 2$ statistic for the data above is 16.16957
B9）with 2 degrees of freedom（ 0.000308 ）
The above example shows two different groups．The calculation shows that the probability for chi－squared 16.16957 with 2 degrees of freedom was 0.000308 ，which is negligible．

LECTURE 45
 Planning Production Levels: Linear Programming

OBJECTIVES

The objectives of the lecture are to learn about:

- Review Lecture 44
- Planning Production Levels: Linear Programming

INTRODUCTION TO LINEAR PROGRAMMING

A Linear Programming model seeks to maximize or minimize a linear function, subject to a set of linear constraints.
The linear model consists of the following components:

1. A set of decision variables, x_{j}.
2. An objective function, $\sum \mathrm{c}_{\mathrm{j}} \mathrm{x}_{\mathrm{j}}$.
3. A set of constraints, $\Sigma a_{i j} x_{j} \leq b_{i}$.

THE FORMAT FOR AN LP MODEL

Maximize or minimize $\sum \mathrm{c}_{\mathrm{j}} \mathrm{x}_{\mathrm{j}}=\mathrm{c}_{1} \mathrm{x}_{1}+\mathrm{c}_{2} \mathrm{x}_{2}+\ldots .+\mathrm{c}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}$
Subject to
$a_{i j} x_{j} \leq b_{i}, i=1,,,, m$
Non-negativity conditions: all $x_{j} \geq 0, j=1, n$
Here n is the number of decision variables.
Here m is the number of constraints.
(There is no relation between n and m)

THE METHODOLOGY OF LINEAR PROGRAMMING

1. Define decision variables
2. Hand-write objective
3. Formulate math model of objective function
4. Hand-write each constraint
5. Formulate math model for each constraint
6. Add non-negativity conditions

THE IMPORTANCE OF LINEAR PROGRAMMING
Many real world problems lend themselves to linear programming modeling.
Many real world problems can be approximated by linear models.
There are well-known successful applications in:

- Operations
- Marketing
- Finance (investment)
- Advertising
- Agriculture

There are efficient solution techniques that solve linear programming models.
The output generated from linear programming packages provides useful "what if" analysis.

ASSUMPTIONS OF THE LINEAR PROGRAMMING MODEL

1. The parameter values are known with certainty
2. The objective function and constraints exhibit constant returns to scale
3. There are no interactions between the decision variables (the additivity assumption)
The Continuity assumption: Variables can take on any value within a given feasible range.

A PRODUCTION PROBLEM - A PROTOTYPE EXAMPLE

A company manufactures two toy doll models:
Doll A

Doll B

Resources are limited to:

1000 kg of special plastic.
40 hours of production time per week.

Marketing requirement:

Total production cannot exceed 700 dozens.
Number of dozens of Model A cannot exceed number of dozens of Model B by more than 350.
The current production plan calls for:

- \quad Producing as much as possible of the more profitable product, Model A (Rs. 800 profit per dozen).
- Use resources left over to produce Model B (Rs. 500 profit per dozen), while remaining within the marketing guidelines.

Management is seeking:

a production schedule that will increase the company's profit
A linear programming model
can provide:

- an insight and
- an intelligent solution to this problem

Decisions variables:

$\mathrm{X}_{1}=$ Weekly production level of Model A (in dozens)
$\mathrm{X}_{2}=$ Weekly production level of Model B (in dozens).

Objective Function:

Weekly profit, to be maximized
Maximize $800 \mathrm{X}_{1}+500 \mathrm{X}_{2} \quad$ (Weekly profit)
subject to
$2 X_{1}+1 X_{2} \square 1000 \leq$ (Plastic)
$3 X_{1}+4 X_{2} \square 2400 \leq$ (Production Time)
$X_{1}+X_{2} \square 700 \leq$ (Total production)
$X_{1}-X_{2} \square 350 \leq$ (Mix)
$X_{j}>=0, j=1,2 \quad$ (Nonnegativity)

ANOTHER EXAMPLE

A dentist is faced with deciding:
how best to split his practice
between the two services he offers-general dentistry
and pedodontics?
(children's dental care)
Given his resources,
how much of each service should he provide
to maximize his profits?
The dentist employs three assistants and uses two operatories.
Each pedodontic service requires .75 hours of operatory time, 1.5 hours of an assistant's time and .25 hours of the dentist's time
A general dentistry service requires .75 hours of an operatory, 1 hour of an assistant's time and .5 hours of the dentist's time.
Net profit for each service is Rs. 1000 for each pedodontic service and Rs. 750 for each general dental service.
Time each day is: eight hours of dentist's, 16 hours of operatory time, and 24 hours of assistants' time.

THE GRAPHICAL ANALYSIS OF LINEAR PROGRAMMING

Using a graphical presentation, we can represent:
all the constraints, the objective function, and the three types of feasible points.

GRAPHICAL ANALYSIS - THE FEASIBLE REGION

The slide shows how a feasible region is defined with non-negativity constraints.

GRAPHICAL ANALYSIS - THE

 FEASIBLE REGION

THE SEARCH FOR AN OPTIMAL SOLUTION

The figure shows how different constraints can be represented by straight lines to define a feasible region. There is an area outside the feasible region that is infeasible.

GRAPHICAL ANALYSIS - THE

 FEASIBLE REGION

It may be seen that each of the constraints is a straight line. The constraints intersect to form a point that represents the optimal solution. This is the point that results in maximum profit of 436,000 Rs. As shown in the slide below. The procedure is to start with a point that is the starting point say 200,000 Rs. Then move the line upwards till the last point on the feasible region is reached. This region is bounded by the lines representing the constraints.

THE SEARCH FOR AN OPTIMAL

 SOLUTION

SUMMARY OF THE OPTIMAL SOLUTION

Model A = 320 dozen
Model B $=360$ dozen
Profit = Rs. 436000
This solution utilizes all the plastic and all the production hours.
Total production is only 680 (not 700).
Model a production does not exceed Model B production at all.
EXTREME POINTS AND OPTIMAL SOLUTIONS
If a linear programming problem has an optimal solution, an extreme point is optimal.

EXTREME POINTS AND OPTIMAL SOLUTIONS

- If a linear programming problem has an optimal solution, an extreme point is optimal.

MULTIPLE OPTIMAL SOLUTIONS

There may be more than one optimal solutions. However, the condition is that the objective function must be parallel to one of the constraints. If a weightage average of different optimal solutions is obtained, it is also an optimal solution.

MULTIPLE OPTIMAL SOLUTIONS

- For multiple optimal solutions to exist, the objectire function must be parallelto one of the constraints

